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9 ABSTRACT10
11

In many spatial trajectory-based applications, it is necessary to map raw trajectory data points12

onto road networks in digital maps, which is commonly referred to as a map-matching process.13

While most previous map-matching methods have focused on using rule-based algorithms to14

deal with the map-matching problems, in this paper, we consider the map-matching task from15

the data-driven perspective, proposing a deep learning-based map-matching model. We build a16

Transformer-based map-matching model with a transfer learning approach. We generate trajec-17

tory data to pre-train the Transformer model and then fine-tune the model with a limited number18

of labeled data to minimize the model development cost and reduce the real-to-virtual gaps.19

Three metrics (Average Hamming Distance, F-score, and BLEU) at two levels (point and seg-20

ment level) are used to evaluate the model performance. The model is tested with real-world21

datasets, and the results show that the proposed map-matching model outperforms other existing22

map-matching models. We also analyze the matching mechanisms of the Transformer in the23

map-matching process, which helps to interpret the input data internal correlation and external24

relation between input data and matching results. In addition, the proposed model shows the25

possibility of using generated trajectories to solve the map-matching problems in the limited26

labeled data environment.27

28

1. Introduction29

The proliferation of mobile devices equipped with Global Positioning System (GPS) has promoted the genera-30

tion of massive amounts of GPS trajectory data, which capture user-specific mobility characteristics and system-wide31

spatio-temporal traffic patterns (Kim and Mahmassani, 2015; Gong et al., 2017). The big trajectory data facilitate32

the emergence of many trajectory-based applications such as path discovery (Chen et al., 2011), location/destination33

prediction (Choi et al., 2018), movement pattern analysis (Renso et al., 2013; Choi et al., 2021), and urban planning34

(Huang et al., 2015). However, spatial discrepancies between recorded GPS locations and real object positions are35

prevalent, which raises the challenges of using GPS trajectory data in trajectory-based applications. For instance, dif-36

ferent types of failures, such as limited satellite visibility, reflected satellite signals, and GPS receiver malfunctions,37

can add errors in position coordinates in the range of 5−20m (Sharath et al., 2019). Deficiencies in current commercial38

digital maps can add further matching errors ranging 5−20m (Toledo-Moreo et al., 2009). As a result, a preprocessing39

procedure known asMap Matching is necessary to correctly identify the true road segments that the moving object of40

a given raw GPS trajectory traveled on. (Quddus et al., 2007).41

Map-matching algorithms have been studied for more than two decades to support various trajectory-based ap-42

plications (Kubicka et al., 2018; Chao et al., 2020; Hashemi and Karimi, 2014). The map-matching methods can be43

divided into online matching that deals with streaming GPS data in real-time and offline matching that processes his-44

torical trajectory data in off-line settings (Gong et al., 2017). This paper focuses on offline map-matching, where our45
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goal is to improve the map-matching accuracy based on historical GPS vehicle trajectory data collected from urban1

road networks. Typical offline methods include geometric algorithm (Bernstein et al., 1996), weight-based method2

(Sharath et al., 2019), Kalman Filter (Jo et al., 1996), Hidden Markov Model (HMM) (Newson and Krumm, 2009),3

and fuzzy control theory (Kim et al., 1998). Most of the existing offline map-matching algorithms take rule-based4

approaches, where algorithms apply pre-defined rules to process each trajectory separately to find its best matching5

road sequence. While these methods are fast and intuitive, processing individual trajectories independently often leads6

to relatively lower map-matching performance as it cannot capture real-life, collective travel patterns embedded in a7

large amount of trajectory data. The big trajectory data contain valuable information which helps us to understand user8

mobility patterns and noise characteristics. On the one hand, it is possible to leverage mobility patterns in historical9

trajectories to improve matching performance. The reason for this is that travel patterns between certain locations are10

usually highly skewed and similar trajectories can often complement each other to make themselves more complete11

(Zheng et al., 2012; Lin et al., 2021). On the other hand, the big trajectory data can be used to extract the character-12

istics of GPS noise in order to further increase map-matching performance. A certain user’s accumulated trajectory13

can disclose the position devices’ noise characteristics (Feng et al., 2020; Wang et al., 2011). Also, the aggregated14

trajectories gathered from various vehicles driving through a similar road network can reveal its noise characteristics15

induced by dense urban canyons (Mohamed et al., 2016), complicated road geometries (Merry and Bettinger, 2019),16

and varying weather conditions (Kos et al., 2013).17

In recent years, deep learning methods have gained popularity as powerful techniques for extracting information18

from big data and have achieved great successes in many fields such as natural language processing (Young et al.,19

2018), computer vision (Voulodimos et al., 2018), and speech recognition (Amodei et al., 2016). In transportation20

engineering, deep learning methods are widely used in analyzing spatio-temporal characteristics of traffic to support21

applications such as trajectory prediction (Choi et al., 2018, 2019; Sun and Kim, 2021), traffic flow prediction (Lv22

et al., 2014; Wu et al., 2018; Wang et al., 2016), and traffic signal control (Genders and Razavi, 2016; Yoon et al.,23

2020, 2021). In the context of map-matching, several studies have shown the possibility of developing deep learning-24

basedmap-matchingmodels that can leverage information in big trajectory data to improvemap-matching performance25

(Feng et al., 2020; Zhao et al., 2019).26

However, there are two challenges for developing map-matching models based on deep learning. One challenge is27

the lack of labeled data for training the model. Collecting a great number of labeled data for model training is expen-28

sive and laborious (Kortylewski et al., 2018). One of the approaches to solving the problem is using data augmentation29

methods, which artificially inflate the dataset to generate invariant examples (Taylor and Nitschke, 2018). However,30

developing the model only with generated data is not sufficient enough due to the existence of real-to-virtual gaps.31

Therefore, we need an additional approach to complement the usage of the generated data in map-matching model de-32

velopment. Another challenge is related to the limited capability of the sequential learning models that are commonly33

adopted as map-matching models. Map-matching tasks can be considered solving sequence-to-sequence (seq2seq)34

problems, where input sequences (raw GPS trajectories) are converted into another domain of output sequences (road35

segments). The existing studies apply sequential learning structures based on Recurrent Neural Network (RNN) to36

solve map-matching problems(Liu et al., 2021). However, RNN has a limited capability to fully capture the intercorre-37

lation among data points in input trajectory sequences and this can produce relatively lower map-matching performance38

(Bahdanau et al., 2014). To overcome the stated limitation, Feng et al. (2020) uses the attentional seq2seq model in the39

map-matching task. However, large computation time in model training and inflexibility of model structure problems40

exist due to the Recurrent Neural Networks (Vaswani et al., 2017).41

In order to address these two challenges, this study develops a Transformer-based map-matching model combined42

with a training approach based on transfer-learning. The training approach based on transfer learning is used to solve43

data sparsity problems for model training. We first pre-train the deep learning model by using a large number of44

trajectories generated based on road network information. Then, a limited amount of available labeled data are used45

to fine-tune the model to reduce the real-to-virtual gaps. This kind of approach has been applied widely in computer46

vision to construct high-performance deep learning models when limited labeled data are available (Kortylewski et al.,47

2018; Tremblay et al., 2018; Namozov and Im Cho, 2018). Therefore, in this research, we can be benefited by using48

the stated approach to tackle the map-matching problem.49

To solve the problems of RNN-based sequential learning models, this study uses Transformer, a prominent deep50

learning model that has been successfully applied in seq2seq problems (Vaswani et al., 2017). The Transformer is51

designed to consider the internal correlation of input data as well as the external relationship between input and output52

sequential data, and to achieve parallel processing by using self and multi-head attention mechanisms. Furthermore,53
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it is more ideal for applying the transfer learning approach to increase model performance than RNN-based models1

because of the flexible and modularized design (Lin et al., 2021; Lu et al., 2021). In addition, the Transformer model2

is more explainable than previous models, providing clear insights into the map-matching process (Clauwaert et al.,3

2020).4

Our contributions can be summarized as follows:5

• We design a transfer learning approach to solve labeled data sparsity problem for deep learning-based map-6

matching model development.7

• We develop a Transformer-based map-matching model that improves model performance in terms of model8

accuracy, computation time, design flexibility, and explainability.9

• We evaluate the performance of map-matching models using three different metrics (Average Hamming Dis-10

tance, F-score, and BLEU) at the point and segment level.11

• We analyze the map-matching results at trajectory-level and attention mechanism-level to improve the explain-12

ability and interpretability of model performance.13

This paper is organized as follows. Section 2 presents literature review. The literature review consists of three14

sections: Section 2.1 presents the comprehensive review of map-matching algorithm; Section 2.3 reviews the Trans-15

former and Section 2.2 introduces the transfer learning. Section 3 describes the methodology of the proposed model.16

In Section 3.1, the preliminary definitions and problems are described. Section 3.2 presents the model input, output17

and architecture. In Section 3.3, three metrics at different levels are introduced. Section 4 describes the performance18

comparison between proposed and baseline models. Section 4.1 introduces the data used in this paper, and in Sec-19

tion 4.2, baseline models are described for model performance comparison. In Section 4.3, the evaluation results are20

presented with proposed metrics. Section 4.4 presents discussion. Finally, in Section 5, conclusions and future works21

are presented.22

2. Literature Review23

2.1. Map-Matching Algorithms24

According to different implementation principles and mechanisms defined in Quddus et al. (2007), the map-25

matching algorithms are categorized into four categories: geometric, topological, probabilistic, and advanced algo-26

rithms.27

Geometric algorithms, which use geometric information from road network data to consider only the shape of28

the links and disregard how they are connected, become the most common approaches in the early stages of building29

map-matching models (Quddus et al., 2007). Bernstein et al. (1996) defined three simple geometric map-matching30

algorithms: point-to-point, point-to-curve, and point-to-point. Although these approaches are simple and intuitive,31

they are sensitive to noise, and connectivity problems exist during link transitions, resulting in unexpected results32

(Quddus et al., 2006; Singh et al., 2019; White et al., 2000).33

Topological algorithms use topology information in themap-matching process. In GIS, topology is the term used to34

describe the relationship between entities (points, lines, and polygons). The stated relationship is defined bymetrics like35

adjacency, connectivity, or containment (Quddus et al., 2007). In Greenfeld (2002), a weighted topological algorithm36

was proposed, which is based on topological analysis of road network. The stated method is sensitive to noise since it37

is dependent on observed users’ coordinate information without considering any extra parameter (heading or speed).38

In Quddus et al. (2003), an enhanced topological map-matching algorithm that incorporates vehicle speed and heading39

information was developed, based on different criteria between the road network and various navigation data. In40

addition, a new weight-based method was developed in Hashemi and Karimi (2016), in which the weight of each GPS41

point was calculated based on positional accuracy, speed, and distance between observed points. Similarly, a global42

map-matching algorithm was proposed by considering road distance, direction, speed, and topology in Yuan et al.43

(2018).44

The basic idea of a probabilistic algorithm is to define a confident custom error region around a vehicle trajectory45

to find multiple possible driving routes. It was firstly introduced in Honey et al. (1989) to match positions from a DR46

sensor by using a stored map database. In Bierlaire et al. (2013), a probabilistic map-matching method for smartphone47
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GPS data was proposed, which generates a set of potential paths, and calculates the possibility of each segment based1

on spatial (GPS coordinates) and temporal (speed and time) information. In Li et al. (2015), a spatial-linear cluster that2

clusters points based on the direction of movement was firstly performed, then for each group, ranked the possible path3

segments, and finally, searched for the appropriate path combination on the candidate data set. Also Zhang et al. (2016)4

used three possibility-related algorithms: probability-based path selection algorithm, the improved prim path selection5

algorithm, and the improved prim path selection algorithm based on probability to improve model performance. In6

the urban environment, the overall performance of probabilistic algorithms is better than geometrical algorithms and7

topological algorithms.8

Advanced algorithms use advanced techniques such as Kalman filter (Jo et al., 1996; Kim et al., 2000), dynamic9

programming (Zhu et al., 2017) and Hidden Markov Model (HMM) (Newson and Krumm, 2009; Yang and Gidofalvi,10

2018; Feng et al., 2020) in map-matching process. Jo et al. (1996) and Kim et al. (2000) combined the geometric11

method with the Kalman filter to improve the matching accuracy. In Zhu et al. (2017), trajectory segmentation map-12

matching with dynamic programming approach was proposed to be used in matching large-scale, high-resolution GPS13

data. Among the various advanced map-matching algorithms, hidden Markov model-based map-matching algorithms14

are widely accepted due to their applicability in sequential modeling and they consider road network connectivity. In15

the HMM-based map-matching models, each road segment is regarded as the state of the hidden Markov process, and16

noisy vehicle location measurements are considered as the state measurements (Newson and Krumm, 2009). Based on17

HMM, numerous developed methods are proposed. In Luo et al. (2017), an enhanced map-matching algorithm with18

a hidden Markov model was proposed based on the geometric data, tree topology matrix of road links, and refined19

quad-tree data structure. In Yang and Gidofalvi (2018), a Fast Map-Matching algorithm (FMM), which integrated the20

hidden Markov model with precomputation was proposed. In FMM, an upper-bounded origin-destination table is pre-21

computed first to store all pairs of shorted paths under a specified length, and then repeated routing queries are replaced22

with quick hash table searches. However, Feng et al. (2020) points out two shortcomings in HMM-based methods:23

they don’t use historical trajectory in the map-matching process and they are susceptible to noisy data. Therefore, the24

researchers proposed deep learning-based map-matching models to solve the two shortcomings in HMM-based map-25

matching methods. The deep learning-based model (DeepMM) completes the map-matching process in the latent26

space, which provides a high tolerance to the noisy trajectory and improves matching accuracy with the information27

of historical mobile patterns.28

2.2. Transfer Learning29

The traditional deep learning technologies have already achieved great success in many areas and have been suc-30

cessfully applied in various transportation engineering (Noh et al., 2022; Choi et al., 2019, 2021). However, most deep31

learning models work well when abundant labeled data are used in model training. In many real-world applications, it32

is often expensive, time-consuming, or even impossible to collect the needed training data for model building. Semi-33

supervised learning can be one of the common solutions to solve the data sparsity problem in model development34

(Zhu, 2005). It is a method that uses massive abundant unlabeled data combined with a limited number of labeled data35

to train the model. Even though the semi-supervised learning methods can relax the dependence on labeled data in36

model training, most of them assume that the distributions of labeled and unlabeled data should be the same (Zhuang37

et al., 2020).38

Another approach for developing a model under lack of labeled data scenario is to use Transfer learning. pTransfer39

learning is a machine learning approach in which a model generated for a task is reused as the basis for a model on a40

different task (Pan and Yang, 2009). The goal of transfer learning is to improve the target learners’ performance on the41

target domains by transferring information from various but related source domains (Zhuang et al., 2020). In this way,42

the dependence on a large number of labeled training data can be reduced. In addition, the data distributions of source43

and target data are usually different, which increases the feasibility to use in various scenarios. In transfer learning,44

based on the target data size and similarity with the source dataset, there are four major scenarios - target dataset is45

large but different from the training dataset, target dataset is large and similar to the training dataset, target dataset is46

small and different from the training dataset, and target dataset is small but similar to the training dataset (Yosinski47

et al., 2014; Pan and Yang, 2009). However, if the relevance between the source and target domains is low, there will48

be negative effects on the target model (Zhuang et al., 2020).49

Recently, to develop a deep learning model with a limited amount of labeled data, the transfer learning approach50

that pre-training the deep learning model with generated data that has high relevance with target data, and fine-tuning51

the pre-trained model with a limited amount of labeled data has recently gained popularity in a variety of fields (Grund-52
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kiewicz et al., 2019; Bird et al., 2020; Kortylewski et al., 2018; Tremblay et al., 2018). In Tremblay et al. (2018), the1

authors proposed a deep neural network for object detection using synthetic images. They showed that it is possible2

to produce a better performing model by combining a synthetic data-based pre-trained model and a real data-based3

fine-tuning method. In Kortylewski et al. (2018), the authors claim that synthetic data can be used to develop the4

deep learning model for solving simple face recognition problems, however, for complex face recognition problems, a5

significant real-to-virtual gap exists. To solve the gap problem, in Kortylewski et al. (2018), they demonstrate that the6

real-to-virtual gap is reduced by fine-tuning the synthetic data pre-trained model with real data.7

2.3. Transformer8

Developing a deep learning-based map-matching model can be treated as building a sequence to the sequence9

learning model. The sequence-to-sequence learning (Seq2Seq), which is mostly used in machine translation, is the10

process of training models to convert sequences from one domain to sequences in another domain (Sutskever et al.,11

2014; Neubig, 2017). In transportation engineering, it is used in traffic flow, next location/destination and vehicle12

trajectory prediction (Hao et al., 2019; Choi et al., 2018, 2019). Recurrent neural networks(RNN) are widely adopted13

because of their capacity to selectively pass information across sequence phases while processing sequential input one14

element at a time (Lipton et al., 2015). However, long-dependency problems exist in simple RNN-based sequential15

learning structures, which are known as encoder-decoder structures. The reason behind this is that the encoder-decoder16

approach requires a neural network to be able to compress all of the necessary information from a source sentence into17

a fixed-length vector. Also, it has limited capability to capture the intercorrelation among data points. In order to18

address the issue, an encoder-decoder model with attention mechanisms is proposed in Bahdanau et al. (2014). Even19

if the stated method solves the stated problems, it is difficult to train the model in parallel owing to the properties of20

RNN cells. In Vaswani et al. (2017), Transformer was introduced to overcome the long-dependency problems and the21

model makes it possible to train the model in parallel. The main characteristic of Transformer in machine translation22

is non-sequential. Transformer processes a sentence as a whole rather than word by word, reducing the risk of losing23

past information from the sentence. Therefore, the aforementioned problems that affect RNN-based seq2seq models24

are solved in the Transformer model. In Section 3.2, we will further introduce the key modules of the Transformer in25

detail.26

Even though the Transformer was originally designed for machine translation, it has been widely used not only in27

Natural Language Processing (NLP) but also in various fields such as audio applications and Computer Vision (CV). In28

Natural Language Processing (NLP), a variety of Transformer variants have been applied, such as machine translation29

(Wang et al., 2019) and language modeling (Keskar et al., 2019; Vig and Belinkov, 2019). Especially, with the great30

success of Transformer-based pre-training models, the Transformer has become the state-of-the-art architecture in31

NLP (Lu et al., 2021; Vig and Belinkov, 2019). In Computer Vision (CV), the Transformer with its variants have been32

applied to solve various tasks, such as image classification (Chen et al., 2021; Liu et al., 2020), object detection (Carion33

et al., 2020; Zhu et al., 2020) and image generation (Parmar et al., 2018; Ramesh et al., 2021). In audio applications,34

various types of Transformers are used to solve the tasks such as speech recognition (Dong et al., 2018; Gulati et al.,35

2020), and speech synthesis (Li et al., 2019; Zheng et al., 2020). In addition, the Transformer is also capable to36

process multiple modalities and datasets. Therefore, it is also adopted in multimodal applications, e.g. text-to-video37

retrieval (Dzabraev et al., 2021; Gabeur et al., 2020) and speech-to-text translation (Di Gangi et al., 2019). Besides, the38

Transformer model can increase the model and result explainability due to the usage of attention mechanisms (Yang39

et al., 2020; Li et al., 2021).40

In conclusion, the above methods demonstrated the feasibility of developing a Transformer-based map-matching41

model with limited labeled data. From the previous studies related to transfer-learning, we conclude the approach42

of pre-training with generated data and fine-tuning with a limited amount of labeled data can solve the labeled data43

sparsity problem in the development of deep learning models. Also, according to the previous studies on Transformer,44

the model can complement the limitation of seq2seq models and improve the performance in terms of model accuracy,45

computation time, design flexibility, and explainability.46
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3. Methodology1

In this paper, the main research objective is to develop a high-performing deep learning-based map matching2

model with a limited labeled data environment. To solve the lack of labeled data for model development, we use3

the transfer-learning approach that consists of pre-training with generated data and fine-tuning with limited labeled4

data. As stated in Section 2.2, transfer learning is one of the efficient methods to solve the data sparsity problem5

in deep learning model development. In addition, the Transformer is adopted instead of the previous RNN-based6

seq2seq model in map-matching model development since it shows high accuracy with less computational costs. In7

addition, the Transformer has a flexible and explainable architecture, which is more suitable to apply the transfer8

learning approach to. To introduce our model in detail, in Section 3.1, we first introduce the preliminaries of our study.9

Then in Section 3.2, we will explain our map-matching model. In Section 3.3, the related evaluation metrics in this10

research are introduced.11

3.1. Preliminaries12

In this subsection, the terms, symbols and definitions used in this paper are introduced.13

Definition 1 (GPS trajectory): A GPS trajectory T r is a sequence of chronologically ordered GPS points T r ∶14

p1 → p2 → ... → pn. Each point pi has information on its GPS coordinates (longitude, latitude)i and timestamp ti.15

Optionally, speed and heading information can be added. In this research, we only require chronologically ordered16

GPS coordinates without timestamp or other information.17

Definition 2 (Road network): A road network (also called as map) is represented by a directed graph G = (V ,E),18

where a vertex v = (x, y) ∈ V represents an intersection or a road end point, and edge e = (id, start, end, l) ∈ E is a19

directed road that starts from vertex start to vertex end along polyline l with unique id.20

Definition 3 (Point-level route): A point-level route RP is a sequence of matched road segments, i.e., RP ∶ e1 →21

e2 → ... → en where ei ∈ E, 1 ≤ i ≤ n. The length of matched segment is same as the input trajectory length,22

i.e., lengtℎ(T r) = lengtℎ(RP ).23

Definition 4 (Segment-level route): A segment-level route RS is expressed as a sequence of connected road seg-24

ments, i.e., R ∶ e1 → e2 → ... → em where ei ∈ E, 1 ≤ i ≤ m,m ≤ n, and ei.end = ei+1.start. The length of route is25

less than input trajectory’s (T r) length, i.e., lengtℎ(RS ) ≤ lengtℎ(T r).26

Definition 5 (Labeled data): A labeled data DLabel in map-matching is pairs of raw GPS points with their corre-27

sponding segments, i.e., DLabel = (T r, RP )28

Definition 6 (Map matching): Map-matchingMMG ∶ T r → RP∕S is the process of finding the point or segment-29

level route RP∕S based on the GPS trajectory T r in a given road network G. In other words, map-matching is the30

process of converting input GPS trajectories into the corresponding road segments.31
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3.2. Map-matching Model1

We develop a Transformer-based map-matching model and propose a training approach based on transfer learning2

in this study. The proposed map-matching method consists of two main approaches: (1) Transfer-learning approach for3

model training with limited labeled data, and (2) Transformer-based map-matching model development. The related4

framework of our map-matching models is shown in Figure 1. In Section 3.2.1, we first generate various training5

datasets with different parameters for model pre-training. Then, the limited labeled data is used for fine-tuning the pre-6

trained map-matching model to improve matching performance and reduce the real-to-virtual gaps that exist between7

generated and real-world trajectories. In Section 3.2.2, we explain how the Transformer is used in our map-matching8

problem. In the following sections, we introduce each approach in detail.9

Figure 1: The framework of proposed map-matching model

3.2.1. Transfer Learning Approach for Model Training with Limited Labeled Data10

As stated earlier, collecting a great number of labeled data for model training is often expensive and laborious11

(Kortylewski et al., 2018). Therefore, one of the biggest challenges in deep-learning based map-matching development12

is building a high-performing model with limited labeled data. In this research, we combine data augmentation (or data13

generation) method and the transfer-learning approach to overcome the challenge and develop a high-performing map-14

matching model. The data augmentation method is used to generate a great number of road network-based trajectory15

data for model pre-training, while the limited labeled data is used inmodel fine-tuning to reduce the real-to-virtual gaps.16

The concepts of pre-training and fine-tuning are from transfer learning. In computer vision (Kortylewski et al., 2018;17

Tremblay et al., 2018; Namozov and Im Cho, 2018), the researchers have successfully used stated methods and have18

demonstrated the potential to develop the high-performing model using generated data and limited labeled data. In this19

section, we introduce how we built our model via data augmentation (data generation) method and transfer-learning20

approach.21

Pre-training with Generated Trajectory Data In map matching, data augmentation or data generation methods22

are used to solve the data sparsity problem. The data augmentation methods in trajectory generation are categorized23

as rule-based and data-based models. The rule-based augmentation methods are defined as generating trajectories24

based on pre-defined rules. Most researches focus on generating trajectories based on the shortest paths between two25

locations since they are simple, intuitive, and fast. However, people do not always choose the shortest path in reality, for26

example, drivers may choose a longer path due to short travel time or inevitable situations. Therefore, it is necessary to27

consider various scenarios to improve the matching performance of the deep learning model. Different from rule-based28
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trajectory augmentation methods, the data-based methods generate trajectories based on the characteristics of known1

data. Typical algorithms are data duplication (Travis and Bevly, 2008), Markov chain (Chen et al., 2011), Generative2

Adversarial Network (GAN) (Wang et al., 2021), and Generative Adversarial Imitation Learning (Choi et al., 2021).3

However, these methods need a sufficient number of labeled data to cover the various scenarios in the target area, which4

is hard to apply in our map-matching task.5

In this study, our goal is to develop a high-performing map-matching model with limited labeled data. Therefore,6

rule-based trajectory algorithms are more suitable since the performance of trajectory generation does not strongly rely7

on the size of collected data. We propose a rule-based trajectory generation method based on the road network data,8

which is cost-effective and can generate various scenarios. The proposed trajectory generation method is divided into9

four steps: Route Generation, Point Generation, Point Selection, and GPS Trajectory Generation.10

Figure 2: Overview of data generation architecture

• Route Generation11

First, a segment connection table is defined using topological information from the road network. The table12

consists of start and end columns that the vehicles move from segment in start to segment in end. Then, all13

feasible routes are generated based on the constructed table. The length of the route is determined by the number14

of linked segments N. More complex routes can be generated when N increases. Figure 2 (a) shows the process15

of route generation.16

• Point Generation17

In the point generation step, we generate points with constant distance D on the road network. The generated18
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points are labeled with road segment ID and their original ID. Then we combine the information from point and1

route generation results to get an initial labeled GPS trajectory. The process is shown in Figure 2 (b) in detail.2

• Point Selection3

After generating the initial labeled trajectory, the number of points at each segment should be determined. The4

amount of points at each segment is mainly affected by labeled trajectory distribution. The number of points is5

different at each road segment due to various sampling intervals and segment lengths. Therefore, we estimate6

the point selection range [r1, r2] and randomly choose points inside it to guarantee that the sampling intervals of7

produced points are close to real trajectories’ sampling intervals. Furthermore, the order of the point selection8

is based on the road direction that the selected point ID in the previous step cannot be greater than the selected9

point ID in the present step. For example, in Figure 2 (c), if we choose a point with ID 4, we cannot choose10

points with IDs are 1,2, and 3 in the next step. The reason for this is that vehicles can only go ahead along the11

direction of the roads. After step 3, the final labeled trajectories are generated.12

• GPS Trajectory Generation13

In the final step, we generate raw trajectories for training the model based on the generated trajectories obtained14

in step 3. We add noise at each point on each trajectory to ensure that the generated raw trajectories are close15

to real-world trajectories. To clarify the characteristics of GPS noise, we first match each GPS point to its16

corresponding segment manually. Since we do not have true trajectory information, we try to find the closest17

point on the labeled road segment and assume it as the true position of the target point. Then, we calculate18

the distribution of the noise along the longitude and latitude from the differences between raw input trajectory19

and assigned true trajectory. To indicate the relationship between the GPS noise along longitude and latitude,20

Pearson’s correlation coefficient (Ahlgren et al., 2003) is used and the corresponding value is 0.094 with 021

P-value. The result indicates that the noise along longitude and latitude are uncorrelated. We use Gaussian22

distribution to fit the noise and the related results are shown in Figure 3. The means and standard deviations23

of the longitude and latitude noise are −0.427m and 15.653m and −0.608m and 14.153m, respectively. The24

previous research has demonstrated the point of view (Feng et al., 2020). Therefore, in this research, we also25

assume that the spatial noise for each coordinate follows zero-mean Gaussian distribution, which is shown as,26

f (xlong∕lat|�2noise) =
1

√

2��2noise

e

−x2long∕lat
2�2noise (1)

where xlong∕lat denotes the spatial coordination (longitude or latitude), �noise is the standard deviation of the27

Gaussian distribution. In this research, different generated raw trajectories with the same labeled trajectory are28

produced by using different � values. Figure 2 (d) depicts the process of GPS trajectory generation.29

In conclusion, the raw trajectory data are generated by using information from the road network and labeled30

trajectory data. After the trajectory generation step, the generated trajectories are ready for pre-training the deep31

learning model.32

We first pre-train our Transformer model by using generated trajectories with various sampling intervals and noise33

distribution. In this paper, the amount of generated trajectory data used for model training is 240,000. Additionally,34

the pre-trained Transformer model is composed of eight attention heads and six layers for each encoder and decoder35

block. When pre-training the model, the loss function is defined by cross-entropy loss between the predicted output36

point-level route R̂P and the labeled route RP . Via backpropagation with the Adam optimizer, we train the network37

with a learning rate of 0.0007 and the dropout value of 0.1.38

Fine-tuning with Limited labeled Data Even if we try to generate data close to real trajectories as much as39

possible, there are still differences between the two datasets, whichmeans that it is not enough to developmap-matching40

algorithms only depending on generated trajectory data. In trajectory generation, the datasets are generated by the41

specific noise distributions (�noise) and sampling intervals. However, these two factors can be different from real-42

world trajectories due to complex and changing communication environments. To fill the real-to-virtual gaps of two43
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Figure 3: Spatial noise distribution of raw trajectories in labeled data

datasets, we choose to use fine-tuning method from transfer learning. In machine learning and deep learning, the term1

fine-tuning is often used to describe the optimization process of hyper-parameters during the validation step. However,2

in the context of “transfer learning,” fine-tuning refers to the process of transforming a model trained on one domain3

(problem) to a new domain (problem). Depending on the fine-tuning dataset size and similarity with pre-trained dataset,4

there are four general scenarios to fine-tune the model (Yosinski et al., 2014; Pan and Yang, 2009).5

(Scenario 1): For a large labeled dataset that is different from the pre-trained model’s generated dataset It is6

preferable to fine-tune all of the model’s layers since the fine-tuning dataset is large enough to train the model and7

significantly different from the pre-training dataset.8

(Scenario 2): For a large labeled dataset that is similar to the pre-trained model’s generated dataset It is feasible9

to freeze components of the layers to fine-tune the model since the fine-tuning dataset is similar to the pre-training10

dataset. Even if fine-tune the whole model, there is no risk of over-fitting since the dataset is sufficient to re-train the11

model.12

(Scenario 3): For a small labeled dataset that is different from the pre-trained model’s generated dataset It is13

the most difficult scenario to deal with and occurs frequently in the real fine-tuning problems. The reason is that there14

are significant differences between the pre-trained dataset and labeled dataset, which means that we cannot fine-tune15

for a small number of layers without taking risks of overfitting problems owing to the small amount of tuning dataset.16

In this case, it is necessary to fine-tune only an appropriate number of layers, which are difficult to control.17

(Scenario 4): For a small labeled dataset that is similar to the pre-trained model’s generated dataset It is one of18

the special cases of scenario 3. In this scenario, we can also use the fine-tuning technique from scenario 3 that choose19

the appropriate layer for fine-tuning. The main difference is the number of fine-tuning layers might be less than the20

previous scenario since the labeled dataset is similar to the pre-training dataset.21

The best scenario for fine-tuning the model is second one that there is a large labeled dataset that is similar to the22

pre-training dataset. Even though the labeled dataset for fine-tuning differs from the pre-training dataset, we retrain the23

entire model to build a high-performing map-matching model if the dataset is large enough. However, it is challenging24

and laborious to collect a large amount of labeled data for model training in reality. Instead, we have to use small25

amount of labeled dataset to build a high-performing model to solve the problems. Therefore, scenario 3 and 4 are the26

two feasible scenarios in this study since the goal is to develop a high-performing map-matching model using limited27

labeled data.28

Despite the fact that both scenarios 3 and 4 require discovering appropriate layers for fine-tuning the model, the29

difficulties of implementing fine-tuning are different. In other words, scenario 4 is considerably easier than scenario30

3 since the real-world trajectories in the former situation are close to the pre-trained model’s generated dataset. As a31

result, having prior information of the real-world trajectories helps us in the generation of more realistic trajectories32

and reduces fine-tuning challenges. However, there are situations when we are unable to obtain any information of real33

trajectory data, making it more difficult to build a high-performing map-matching model. In other words, it is hard to34
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generate a realistic training dataset, which increases the difficulties in the fine-tuning process. As a result, it is preferable1

to consider both situations and generate two different datasets for pre-training, one of which is similar to the real-world2

instance and the other completely different, and then use the limited labeled dataset for fine-tuning. Furthermore,3

throughout comparing the performance of two models that are pre-trained with different generated trajectory data and4

fine-tuned with the same labeled data, we can demonstrate the importance of prior knowledge of real-world trajectories5

and determine how much fine-tuning improves model performance.6

In this study, we choose four fine-tuning components in Transformer: 1○ output module, 2○ normalization layers7

in encoder and decoder modules, 3○ full encoder modules, and 4○ full decoder modules. The red circled numbers in8

Figure 5 depicts the fine-tunable components. To identify the appropriate fine-tuning layers for both cases, we fine-9

tune each module individually first, then gradually increase the number of tuning modules. The corresponding results10

are introduced in Section 4.3.2 in detail.11

3.2.2. Transformer-based Map-matching Model12

In this section, we explain the input and output structure of the proposed map-matching model. Then, spatio-13

temporal feature extraction method of input GPS trajectory is introduced. Finally, the architecture of map-matching14

model is presented. The Transformer-base map-matching process is shown in Figure 415

Figure 4: Transformer-based map-matching model process
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Model Input and Output As discussed earlier, the input of map-matching model is the GPS trajectory (T r) and the
output is the point or segment-level route (RP∕S ). Each GPS trajectory contains n GPS points.

T r = [p1,⋯ , pn] =
[

(

lat1, long1
)

,⋯ ,
(

latn, longn
)

]

(2)
Instead of using raw GPS points, in this study, we use a normalized GPS trajectory to make the training faster and

reduce the possibility to get stuck in local optimal solution (Sola and Sevilla, 1997). The normalized GPS trajectory
is denoted as T rnorm as shown in Eq.3.

T rnorm = f norm(T r) =
[

(

f norm(lat1), f norm(long1)
)

,⋯ ,
(

f norm(latn), f norm(longn)
)

]

(3)
The normalization function is defined as

f norm(X) =
X −Xmin
Xmax −Xmin

(4)

where X represents the GPS coordinate longitude or latitude, XmaxandXmin are the maximum and minimum1

longitude or latitude values in the target network. In Figure 4, steps 1-3 present the normalization process from GPS2

trajectory (T r) to input trajectory (T rnorm).3

The first output of the proposed model is the point-level estimated route R̂P , which contains nmatched edges ên foreach GPS point. In Figure 4, steps 3-12 shows the map-matching process from input trajectory (T rnorm) to point-level
estimated route (R̂P ).

R̂P =MMG(T rnorm) = [ê1,⋯ , ên] (5)
To further obtain the segment-level estimated route R̂S , the unique values êm are chosen in the point-level estimated4

route R̂P without sorting since the order of the value provides the vehicle’s traveling direction information. In Figure 4,5

steps 12-14 show the process of obtaining R̂S from R̂P .6

R̂S = Unique(R̂P ) = [ê1,⋯ , êm] (6)
Spatio-Temporal Feature Extraction The GPS trajectory is one of the spatio-temoral data since it includes both7

spatial and temporal information. In map matching, the spatial information of input trajectory is used to detect the8

location of the GPS points and find noise distribution, while the temporal information helps us comprehend the order9

of the GPS points, indicating the moving direction of the vehicle. As a result, it is crucial to extract both features10

properly in the map-matching process. In this research, learned positional embedding (Gehring et al., 2017) is applied11

for temporal information extraction, while a novel GPS embedding method is used to extract spatial features of the12

input trajectory.13

• Spatial Feature Extraction14

In deep learning, it is common to use feature-extraction layers to convert input variables into feature vectors.15

In map matching, it is necessary to extract the spatial features from input trajectories to train the deep learning16

model. Previous researches that used deep learning for map-matching problems discretized the road networks17

into zones and used embedding or one-hot encoding to extract the spatial features (Zhao et al., 2019; Feng et al.,18

2020). However, using discretized road network is ineffective in map-matching tasks as this method can lead19

to information loss of our input data. In other words, the important features of trajectory such as the noise20

characteristics, moving direction, and distance between GPS points will be neglected if we choose the previous21

method. As a result, in this study, we use multiple fully connected layers to prevent data loss and extract spatial22

features of input data.23

ℎspatial = FC(T rnorm) (7)
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• Temporal Feature Extraction
In the Transformer, additional positional representation, also known as positional embedding is required to
model the temporal features of input GPS data since the positional information of input data is ignorant. In this
research, the positional embedding is defined as,

ℎtemporal = Embedding(Arrange(len(T rnorm)) (8)
where Embedding is the dense representation that converts discrete position feature to continuous vector form,1

Arrange(X) generates the integer number from 0 to X-1, and len(T rnorm) represents the length of trajectory.2

Vaswani et al. (2017) demonstrates that the results are similar between cosine function-based positional encoding3

and learned positional embedding which is used in this research.4

After extracting spatial features from Eq. 7 and temporal features from Eq. 8, we combine these two features to5

get a spatio-temporal feature representation of input data. The corresponding expression is shown as,6

ℎST = ℎspatial + ℎtemporal (9)
where both of them have same dimension Demb, which is dimension of embedding. In Figure 4, steps 3-6 present the7

process of spatio-temporal feature extraction of input trajectory(T rnorm).8

Transformer Architecture In the proposed map-matching model, there are two reasons for choosing Transformer9

to deal with map-matching problems. The Transformer can capture the internal correlation of the GPS trajectory and10

the external correlation between the GPS trajectory and the output route (or segment-level routeRS ). The correlations11

are primarily captured by attention modules in both encoder and decoder (Lu et al., 2021). In the encoding stage, the12

attentionmodules capture the internal correlation of GPS trajectory, which helps to understand the relationship between13

each GPS points in the trajectory and reduces the effects of uncorrelated GPS points in map-matching processes.14

Similarly, the attention modules in the decoding stage extract the relationship between the input GPS trajectory and15

the output route to enhance matching performance and to analyze and interpret the matching result. Therefore, the16

matching performance at confusing regions such as the initial segment, last segment, and the transition area between17

two consecutive segments can improve due to stated characteristics.18

The architecture of the Transformer is shown in Figure 5. It mainly consists of four components: input embed-19

ding, encoder, decoder, and output modules. The input embedding module includes spatial and temporal embedding.20

It extracts the spatio-temporal features of input trajectory, which has been introduced previously. The encoder and21

decoder modules are mainly composed of multi-head attention, normalization layers, and position-wise feed-forward22

networks. The encoder module is used to understand spatio-temporal features of GPS trajectory data, and generate a23

representation (ℎenc) for the observation sequence based on the extracted information of input data (ℎST ). Conversely,24

the decoder module converts encoded information from the encoder module to the target output sequence. The output25

module also functions as a classification module, classifying the input GPS points into segments. The output module26

composes a fully connected layer. In the next, three main components in encoder and decoder modules are introduced.27

• Self and Multi-head Attention28

In self-attention model, query matrix Q, key matrix K and value matrix V have dimensions d = dk = dq = dv,29

respectively. The attention equation used in Transformer is shown as,30

Attention(Q,K,V) = Softmax(QKT
√

Dk
)V = AV (10)

where A = softmax(QKT
√

Dk
) is attention matrix. To alleviate gradient vanishing problem of softmax function,31

the dot-products of queries and keys are divided by√Dk.32

Instead of simply applying a single attention function, it has been found that it is beneficial to map the queries,
keys, and values forH times to learn different contextual information respectively. In other words, the dimension
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of each head d is equal to Demb

H , i.e., Dℎead = d = Demb

H . The self-attention function is performed on each
projected version of queries, keys, and values in parallel. Then the results from each self-attention function are
concatenated and projected again to obtain the weight of final values. The aforementioned process is defined as
multi-head attention, which is shown as,

MultiHeadAttn(Q,K,V) = Concat(ℎead1, ℎead2...ℎeadH )WO

ℎeadi = Attention(QW Q
i , KW

K
i , V W

V
i )

(11)

where W Q
i ,W

K
i ,W

V
i ,W

O are the projections of parameter matrices in queries, keys, values, and output, re-1

spectively.In Figure 4, steps 7-8 presents the multi-head attention process of encoder and decoder.2

• Normalization layer3

In the encoder and decoder modules, the Transformer uses a residual connection (He et al., 2016) around multi-4

head attention and position-wise feed-forward network, followed by Layer Normalization (LN) (Xu et al., 2019;5

Ba et al., 2016). LN is defined as6

LayerNorm(X) = g ⋅N(X) + b

N(X) = X − �
�

� = 1
Demb

H
∑

i=1
xi

� =

√

√

√

√ 1
Demb

Demb
∑

i=1
(xi − �)2

(12)

where X = (x1, x2⋯ xemb) is the input vector with size Demb. � and � are the mean and standard deviation of7

input. b and g are the trainable parameters with the same dimension Demb. LN is considered as a mechanism,8

which is effective at stabilizing the hidden state dynamics in recurrent networks (Ba et al., 2016).9

• Position-wise Feed-Forward Network
The position-wise feed-forward network consists of two linear transformations separated by a RELU activation.
Each network in the encoder and decoder modules operates separately and identically in each position. The
equation is defined as,

FFN(x) = ReLU (W1x + b1)W2 + b2 (13)

where x is the outputs of previous layers, andW1,W2, b1, b2 are trainable parameters. Even though the network10

is simple, it is important for the Transformer to achieve good performance since it can prevent rank collapse11

problems, which can occur when the self-attention are simply stacked (Lin et al., 2021).12

After getting results from decoder modules, we use the output module to do the classification. The output module13

uses a fully connected to change the dimension from Demb to Doutput, where Demb is the dimension of embedding and14

Doutput is the target output dimension of our model. In this research,Doutput = number of link +1 due to padding tokens15

in input trajectory. In addition, the Softmax function is used to calculate the matching probability of each GPS point16

at each segment. The corresponding process is shown as,17

P = Softmax(FC(ℎdec)) (14)
where ℎdec represents the result from decoder modules. FC is the fully connected layer, P output probability and18

Softmax represents the softmax function. The dimension of P is same as input data T rnorm. In Figure 4, steps 8-1019

depict the process of calculating output probability (P ) from model output.20
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Figure 5: Overview of the Transformer architecture

After obtaining output probability P , we use function argmax to get the point-level estimated route (R̂P ). The1

corresponding expression is shown as,2

R̂P = argmax(P ) = [ê1,⋯ , ên] (15)
where ên indicates the best matched segment for each GPS point. In Figure 4, steps 10-12 depict the process of3

calculating the point-level estimated route (R̂P ) from output probability (P ).4

3.3. Evaluation Metrics5

We use three metrics for evaluation - Average Hamming Distance (AHD), F-score, and BLEU at point and segment6

level to compare and evaluate the overall performance of map-matching models. The point-level matching analyzes7

the matching result at the point-level route(RP ). The point-level matching is beneficial to find how the map-matching8

model matches each point accurately to its corresponding segment. Most previous researches, particularly in the field9

of online map-matching models, have used various point-level approaches to evaluate their map-matching model.10

Even though it is crucial to properly match each point, route integrity is also an essential factor to consider in map-11

matching tasks, especially in offline map-matching models. The route integrity refers to how completely the map-12

matching models match the GPS points to road segments at trajectory level. For example, suppose the labeled result13

at point-level route (RP ) is [98, 98, 98, 97, 97, 97, 1, 1, 3, 3], and the candidates are [98, 98, 97, 97, 97, 1, 1, 1, 3, 3] and14

[98, 98, 107, 97, 97, 1, 1, 183, 3, 3]. Although both results have a matching accuracy of 0.8, the first one is better in route15

integrity than the second. As a result, not only map accuracy but also route integrity should be taken into account.16

We define segment-level matching, which focuses on matching results at the segment-level route (RS ). We select the17

unique value in the matching result without changing the order. In the previous example, the segment-level labeled18

result is transformed into [98, 97, 1, 3]. Segment-level matching is beneficial for minimizing the impact of confusing19

points in map-matching results. In practice, it is difficult to annotate the points manually at some regions where there20

aremultiple segments close to the target matching points on the actual path (Taguchi et al., 2018). Therefore, we need to21
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analyze the result in segment-level matching. As previously stated, the labeled result at segment level is [98, 97, 1, 3]1

and the two candidates are converted as [98, 97, 1, 3] and [98, 107, 97, 1, 183, 3], respectively. In this situation, the2

former’s matching accuracy is 1 and the latter’s should be transformed first by using the sequence alignment method3

for accuracy-calculation.4

Therefore, we evaluate the model performances with three metrics at point and segment level to consider the point5

matching accuracy and route integrity. The Average Hamming Distance (AHD) and F-score are used to calculate the6

accuracy and the Bilingual Evaluation Understudy (BLEU) score is useful to consider the order of result sequence and7

its integrity.8

Average Hamming Distance (AHD) In information theory, the Hamming distance measures the number of posi-9

tions in which the corresponding symbols are different between two equal-length strings (Hamming, 1986; Bookstein10

et al., 2002). Average Hamming Distance is defined as the total number of different symbols divided by the length of11

string (Shutao and Fu, 1998; Zhang, 2001). In map-matching evaluation, we transform the Average Hamming Distance12

to calculate the model accuracy. The equation is shown as,13

AHDpoint∕segment =
∑

# of matcℎed points∕segments
∑

# of points∕segments
(16)

However, in segment-level matching, the length of the result and labeled sequences are not always identical. For14

example, the result sequence is [7, 8, 9], whereas the true sequence can be [7, 8, 9, 10]. Therefore, to calculate the accu-15

racy at the segment level, it is necessary to implement sequence alignment algorithms. In this paper, the Needleman-16

Wunsch algorithm, which is an algorithm used in bioinformatics to align protein or nucleotide sequences is adopted to17

balance the length of the result and labeled segment sequences Likic (2008).18

F-Score The second performance evaluation metric is the F-score, which is one of the most commonly used measure-19

ments of a model’s accuracy Sokolova et al. (2006). It is used to evaluate binary classification systems, which classify20

examples into ‘positive’ or ‘negative’. The traditional F-score (or F1score) uses the harmonic mean of precision and21

recall of the model. The related equation is shown as,22

Fscore =
2

1
recall ⋅

1
precision

= 2 ×
precision × recall
precision + recall

(17)

BLEU score BLEU (Bilingual Evaluation Understudy) score (Papineni et al., 2002) is one of the most commonly23

used metrics in machine translation and sequence to sequence learning problems. Recently, BLEU is applied as a24

measurement of effectiveness in trajectory-based researches (Choi et al., 2021; Sun and Kim, 2021). In machine25

translation, BLEU scans the reference sentences to see if the translated sentences include the same words or contiguous26

sequence of n elements. BLEU uses a modified form of precision to compare reference sequences and a candidate27

output sequence by using the clipping method. The number of each chunk is clipped to a maximum count (mmax) to28

avoid generating the same chunks to get a high score in the output sequence. The equation of modified precision is29

shown as,30

Pn =

∑

i∈C
min(mi mi,max)

wt
(18)

where n is the number of elements considered as chunk; C is a set of unique chunks in the output sequence; mi is the31

number of occurrences of chunk I in the output; m(i, max) is the maximum number of occurrences of chunk i in one32

of the reference sequences; and wt is the total number of chunks in the output sequence.33

BLEUn score consists of the geometric mean of Pn and a term of brevity penalty. The brevity penalty is used to34

prevent short candidates from getting high scores. The BLEUn is shown as,35

BLEUn = min(1,
lengtℎgen

lengtℎref ,close
)(

n
∏

i=1
Pi)

1
n (19)
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where lengtℎgen represents the length of the output sequence; lengtℎref ,close is the length of a reference sequence that1

has the closest length to the output sequence. We use n = 3 for evaluation because the minimum length of the sequence2

is 3 in the results.3

4. Performance Evaluation4

4.1. Data5

There are two types of trajectory datasets used in model training and evaluation. Specifically, the generated dataset6

is used in the Transformer model pre-training, while the labeled dataset is utilized for model fine-tuning and model7

performance evaluation. The details of these two datasets are described as follows.8

Generated data As discussed in Section 3.2.1, we use a rule-based trajectory generation method based on the road9

network information since it is cost-effective and can generate various scenarios. The proposed trajectory generation10

method is divided into four steps: Route Generation, Point Generation, Point Selection, and GPS Trajectory Genera-11

tion. In trajectory generation, it is critical to make the trajectories close to the real ones since the model performance12

can be affected by the quality of training data. Therefore, we use the noise distribution and sample interval information13

from the labeled dataset to generate the trajectory. As discussed in GPS Trajectory Generation, the noise along longi-14

tude and latitude is are uncorrelated and each of them follows the zero-mean Gaussian distribution. The related figure15

is shown in Figure 3. Therefore, from the results, we determine the distribution of GPS noise along longitude and lat-16

itude as zero-mean Gaussian distribution with a standard deviation of 15m. To determine the sampling intervals, the17

number of points is different at each road segment due to various sampling intervals and segment lengths. Therefore,18

as we discussed in Point Selection in Section 3.2.1, instead of determining the specific sampling interval, we estimate19

the point selection range [r1, r2] and randomly choose the points inside it. For example, if the point selection range is20

[1, 9], it means that the number of points on the segments can be randomly selected from 1 to 9. This kind of approach21

can ensure the sampling intervals of generated trajectories are close to the real situation since the real situation. In22

this experiment, we set the range as [1, 14], which is close to the situation of our dataset. Here, 14 is the maximum23

number of points that can exist on a segment in our labeled dataset. Finally, in this research, a total of 240,000 labeled24

trajectories were generated for model pre-training.25

Labeled data A case study is designed to evaluate the performance of the proposed map-matching model, using26

data collected by digital tachographs (DTG) installed at taxis operating in Gangnam District in Seoul, South Korea.27

The DTG collects information such as driving position (longitude and latitude), speed, and passenger occupancy. The28

passenger occupancy information shows if there are passengers on the taxi or not, and it is used in data preprocessing.29

The collected data are converted into a taxi trajectory dataset by chronologically linking the data points of the same30

taxi ID. In this study, we choose the taxi trajectories that traveled in the Gangnam district where GPS errors occur31

frequently due to the complex urban environment situation. The Gangnam district consists of 228 major road segments32

in a grid structure as shown in Figure 6. We further divide the trajectory with the same ID into several sub-trajectories,33

which cover the trip for each passenger, because each taxi trajectory comprises several trips associated with various34

passengers. We choose the passenger-level sub-trajectories, which lengths are greater than two kilometers and average35

sample intervals are around 20 seconds. After the data preprocessing step, we manually label each GPS point to its36

corresponding segment, obtaining 1,331 vehicle trajectories with 35,127 GPS points. In our dataset, various scenarios37

are included such as congestion, detouring, and U-turn. In this research, we randomly select 931 trajectories from38

labeled labeled taxi trajectory data (70% of the dataset) for training and fine-tuning the model, while the left 400 labeled39

passenger-level trajectories (30% of the dataset) are used as the test dataset for evaluating models’ performances.40

4.2. Baseline Models41

We compare the performance of our model with four baseline models.42

• FMM (Yang and Gidofalvi, 2018): It provides a fast map-matching technique that is both efficient and scalable.43

FMM uses two techniques to incorporate the hidden Markov model: 1) pre-computing the upper bound origin-44

destination table to store all pairs of shortest routes; 2) using fast hash table search to replace repetitive routing45

queries.46

• ST-Matching (Lou et al., 2009): It’s widely used in GPS trajectories with low-sampled cases. It creates a candi-47

date graph to identify the best-matched route by taking into account the road network’s spatial and topological48
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Figure 6: Road network in Gangnam district (Background: Kakao map (https://map.kakao.com))

characteristics, as well as the temporal aspects of trajectories.1

• LSTM-based seq2seq model (Zhao et al., 2019): It is less affected by dense noise and it is also powerful in the2

urban area. In the seq2seq model, the input trajectories are compressed to context vectors in encoding states,3

and the road segment trajectories are translated at decoding states. The RNN cells used in both encoding and4

decoding states are LSTM.5

• LSTM-based attentional seq2seq model (Feng et al., 2020): It is more efficient in the map-matching process6

since it solves the long-dependency problems existing in RNN-based seq2seq models. Specifically, if a fixed-7

size context vector is used, there may be diminishing problems when translating long raw trajectories, leading8

to the accuracy drop. To solve the problem, a dynamic context vector generated from encoder hidden states for9

each translation step is used to make an attention layer in the attentional seq2seq model. The LSTM cells are10

used in both encoding and decoding states.11

4.3. Result12

The results of performance evaluations for the proposed map-matching model are discussed in four different per-13

spectives: 1) Performance evaluation at pre-training stage, 2) Performance evaluation at fine-tuning stage, 3) Anal-14

ysis on trajectory-level performance improvement, and 4) Analysis on attention mechanism in Transformer. In Sec-15

tion 4.3.1, we use generated trajectory data to pre-train the deep learningmodels and evaluate thematching performance16

using labeled testing data. We generate two trajectory datasets that have different noise standard deviations(�noise) to17

evaluate the noise effects on model performance. The first dataset is built without noise, while the second dataset is18

constructed with Gaussian distributed noise with the 15m standard deviation for each coordinate. In Section 4.3.2,19

we fine-tune two pre-trained Transformer models to see how much the method improves matching performances. As20

stated earlier, we randomly select 931 trajectories (70% of labeled data) for fine-tuning the model and the last 40021

trajectories are used in model evaluation. Figure 5 shows four components, which are represented by red circles. The22

full encoder modules, for example, are used to extract features of input data, whereas the full decoder modules are used23

to convert the extracted information from the encoder modules to the target domain. We gradually increase the number24

of components for fine-tuning in order to find the best scenarios for our proposed map-matching model. At analyzing25

stage, we primary analyze the result at the trajectory level in Section 4.3.3 to reveal how the fine-tuning approach im-26

proves the map-matching performances and reduces the real-to-virtual gaps when compared to the pre-training model27

at trajectory level. Finally, in Section 4.3.4 attention mechanisms of fine-tuned Transformer model are analyzed in28

order to better understand the map-matching mechanisms of our proposed model.29
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Table 1
Pre-trained model performance at point and segment level (bar graph scaled from 0.3 to 1)

Type Model Data AHD F-score BLEU

ST-Matching - 0.8719 0.7151 0.8548

FMM - 0.8573 0.7184 0.8517

labeled training data 0.4829 0.3480 0.5679

generated data (σnoise = 0m) 0.6340 0.4933 0.7032

generated data (σnoise = 15m) 0.8960 0.8386 0.9029

labeled training data 0.6049 0.4475 0.7150

generated data (σnoise = 0m) 0.8018 0.7367 0.9004

generated data (σnoise = 15m) 0.9563 0.9372 0.9557

labeled training data 0.7644 0.6799 0.6585

generated data (σnoise = 0m) 0.8623 0.7860 0.8905

generated data (σnoise = 15m) 0.9737 0.9558 0.9724

ST-Matching - 0.7408 0.6915 0.6668

FMM - 0.7477 0.6950 0.6775

labeled training data 0.5714 0.4739 0.4546

generated data (σnoise = 0m) 0.7127 0.6004 0.6417

generated data (σnoise = 15m) 0.9156 0.8852 0.9209

labeled training data 0.7007 0.5947 0.6272

generated data (σnoise = 0m) 0.9027 0.8478 0.8743

generated data (σnoise = 15m) 0.9741 0.9601 0.9660

labeled training data 0.7068 0.5816 0.7423

generated data (σnoise = 0m) 0.9150 0.8633 0.9020

generated data (σnoise = 15m) 0.9784 0.9643 0.9751

Point

LSTM Attn seq2seq

LSTM seq2seq

Transformer

Segment

LSTM seq2seq

LSTM Attn seq2seq

Transformer

4.3.1. Performance Evaluation at Pre-training Stage1

In trajectory generation for model pre-training, we assume the spatial noise at longitude and latitude follows zero-2

mean Gaussian distribution, as stated in GPS trajectory generation in 3.2.1, To make more realistic trajectories, we3

choose 15m as the noise standard deviation (�noise) since the standard deviations of the longitude and latitude noise4

15.653m and 14.153m, respectively. We evaluate our model with four baseline models on the labeled test dataset5

and corresponding results are shown in Table 1. FMM and ST-Matching models do not require training procedures6

since they are rule-based models, and the performance of the model is evaluated based on the test dataset with 4007

trajectories. Three deep learning models (LSTM-based seq2seq, LSTM-based attentional seq2seq and Transformer8

models) are trained on three different datasets: 1) labeled training dataset with 931 trajectories (Dlabel), 2) generated9

trajectory without noise (�noise = 0m) (DGen,0m) and generated trajectory with Gaussian distributed noise (�noise =10

15m) (DGen,15m). Then, the performance of each model is evaluated based on the test dataset with 400 trajectories.11

From the perspective of training data, the results reveal that Dlabel is not enough to build a high-performing map-12

matching model because it doesn’t cover the whole target area and various scenarios. In addition, we found that13

deep learning-based map-matching models show better performances than rule-based models when they are trained14

with proper datasets. In other words, the quality of the training datasets affects the performance of these models.15

Specifically, these models show lower performances than rule-based models if the training datasets are different from16

the target dataset, such as DGen,0m. In our experiment, the quality of the dataset is highly affected by the existence17

of Gaussian distributed noise. The DGen,15m is more close to real-world trajectory since the noise distribution used18

in data generation is based on real labeled data. On the contrary, DGen,0m doesn’t add noise, which has significant19

differences. The result indicates the potential to use generated data to overcome the lack of labeled data problems20

at the training stage. From the perspective map-matching model, two rule-based models (FMM and ST-matching)21

achieve similar performance in three metrics with two levels. The three deep learning models trained by generated22

dataDGen,15m show better matching performances than two rule-based models. Among three deep learning models, the23

LSTM-based seq2seq model shows the lower performance. Conversely, the Transformer-based map-matching model24

outperforms the other deep learning models. Even though the LSTM-based attentional seq2seq model has comparable25

performance when the training dataset is DGen,15m, we can show the superiority of the Transformer-based model in26

the other perspectives. We will discuss it in Section 4.4. Therefore, we can conclude that our proposed Transformer-27
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based map-matching model trained by generated data DGen,15m outperforms baseline models in the map-matching1

process. From the perspective of model evaluation, the rule-based map-matching models perform better at point-level2

matching than segment-level matching. As mentioned in Section 3.3, the point-level matching result focuses on how3

the model matches each point accurately to its corresponding segment. Conversely, the route integrity is illustrated4

by the segment-level results, which indicates how well the models match the linked segments that reflect the entire5

trajectory. The stated rule-basedmodels can not efficientlymatch the points which are located at confusing regions such6

as the initial segment, last segment, and the transition area between two consecutive segments. They often mismatch7

these points onto the wrong segments that are not related to representing the target trajectory. As a result, the segment-8

level results are highly affected by these wrong points, which leads to lower accuracy than point-level results. On the9

contrary, in deep learning-based models, the overall performances are better in segment-level results, indicating that10

deep-learning models are better to extract objects’ routes and are ideal for developing map-matching models.11

4.3.2. Performance Evaluation at Fine-tuning Stage12

In the following series of experiments, we study how the real-to-virtual gaps between generated trajectories and13

the real labeled trajectories are reduced by using the fine-tuning method. From the previous section, we conclude14

that Transformer-based map-matching models show better performances among three deep learning models with three15

different datasets. As a result, we choose to fine-tune the Transformer-based models to get high-performing map-16

matching models.17

In this experiment, two pre-trained Transformermodels, which are trained withDGen,0m andDGen,15m, are chosen to18

do fine-tuning withDlabel.The components of Transformer for fine-tuning are depicted in Figure 5: 1○ output module,19

2○ normalization layers in encoder and decoder modules, 3○ full encoder modules, and 4○ full decoder modules. We20

gradually increase the number of tuning components from the output module to the entire model to analyze the effects21

of fine-tuning on model performances. We fine-tune the models 30 times and the averaged results are shown in Table 222

and 3.23

Table 2 shows the fine-tuning results at DGen,0m-based pre-trained Transformer model. From the perspective of24

model performance, overall performance is improved after fine-tuning at both point and segment levels. To be more25

specific, the pre-trained model performs poorly when compared to the pre-trained model trained with DGen,15m since26

the characteristics of the pre-trained dataset are different from the real labeled dataset. From the perspective of fine-27

tuning components, there are no significant performance differences except tuning the output layers. This case can be28

treated as scenario 3, where the size of the labeled dataset is small and different from the pre-trained dataset as stated29

in Section 3.2.1. In this case, it is not enough to only fine-tuning the output module to get a high-performing model.30

Instead, We must find appropriate fine-tuning modules to improve model performance. In this instance, fine-tuning is31

used to improve model performance at both point and segment levels by reducing real-to-virtual gaps.32

Table 3 represents the fine-tuning results of the pre-trained model trained with DGen,15m. From the perspective of33

model performance, in the point-level result, there are minor improvements. In the segment-level result, although the34

improvements are small, they are noticeable when compare to the point-level findings. Also, there are no significant35

variations between the results of each fine-tuned component. One of the key explanations of these findings is that36

the pre-trained dataset exhibits similar characteristics to the real labeled dataset. Specifically, the pre-trained model37

shows high performance because the generated trajectories used in model training are close to real-world trajectories.38

Therefore, the fine-tuned results are not obvious at each component. We can consider this case as scenario 4, where39

the size of the labeled dataset is small but similar to the pre-trained dataset, as stated in Section 3.2.1. According to40

the results, the fine-tuning method in this case is prominent in improving segment-level matching performance. In the41

next Section 4.3.3 we will discuss the findings in detail.42

There are two main conclusions throughout the results. First, the fine-tuning method is beneficial in improving43

model performance. Even though there are performance differences between two fine-tuned pre-trained models, both44

of them show high performance in the map-matching task. Especially, the pre-trained model used in Table 2 becomes a45

high-performing model after using the fine-tuning method. This finding shows the potential of the fine-tuning method46

in building amore general map-matchingmodel with simply generated trajectories. In practice, it is difficult to generate47

trajectories that are close to target real-world trajectories precisely without prior information. As a result, it is important48

to develop a more general map-matching model that not only shows high performance but also can be built without49

any prior information. Second, the prior information of real-world trajectories is efficient in model development. The50

efficiency is demonstrated in fine-tuning process. As previously stated, DGen,15m are close to real-world trajectories51

so that the pre-trained model outperforms the others. As a result, it is considerably easier to find suitable components52
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for fine-tuning the model when compared to the pre-trained model, which is shown in Table 3. In other words, if we1

generate datasets using prior information, we can reduce the costs of finding appropriate fine-tunable components.2
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Table 2
Matching results of fine-tuned pre-trained model with DGen,0m (bar graph scaled from 0.75 to 1)

Type Fine Tuned Parts AHD F-score BLEU 

None 0.8623 0.7860 0.8905

① 0.9182 0.8720 0.9256

② 0.9522 0.9252 0.9540

③ 0.9489 0.9222 0.9508

④ 0.9521 0.9268 0.9544

①+② 0.9521 0.9268 0.9538

①+③ 0.9494 0.9232 0.9512

①+④ 0.9492 0.9237 0.9511

①+③+④ 0.9449 0.9224 0.9541

Full 0.9492 0.9237 0.9511

None 0.9150 0.8633 0.9020

① 0.9533 0.9223 0.9437

② 0.9742 0.9568 0.9683

③ 0.9763 0.9602 0.9708

④ 0.9762 0.9603 0.9694

①+② 0.9717 0.9528 0.9644

①+③ 0.9761 0.9600 0.9701

①+④ 0.9757 0.9596 0.9686

①+③+④ 0.9758 0.9594 0.9688

Full 0.9763 0.9602 0.9695

Point

Segment

Table 3
Matching results of fine-tuned pre-trained model with DGen,15m (bar graph scaled from 0.9 to 1)

Type Fine Tuned Parts AHD F-score BLEU 

None 0.9737 0.9558 0.9724

① 0.9713 0.9553 0.9706

② 0.9789 0.9660 0.9779

③ 0.9737 0.9599 0.9730

④ 0.9748 0.9621 0.9740

①+② 0.9789 0.9660 0.9779

①+③ 0.9730 0.9596 0.9724

①+④ 0.9747 0.9622 0.9740

①+③+④ 0.9737 0.9615 0.9731

Full 0.9737 0.9612 0.9731

None 0.9784 0.9643 0.9751

① 0.9818 0.9696 0.9772

② 0.9867 0.9773 0.9814

③ 0.9859 0.9761 0.9812

④ 0.9874 0.9786 0.9813

①+② 0.9867 0.9772 0.9813

①+③ 0.9864 0.9769 0.9822

①+④ 0.9877 0.9790 0.9815

①+③+④ 0.9884 0.9801 0.9841

Full 0.9880 0.9795 0.9837

Point

Segment
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4.3.3. Analysis on Trajectory-level Performance Improvement1

In this section, we analyze the result at the trajectory level and investigate how the fine-tuning approach improves2

the matching performance and reduces the real-to-virtual gaps between generated and real-world trajectories. Figure 73

depicts one of the matching results of the fine-tuned map-matching model which shows the best performance from4

the previous section. This figure is divided into two parts: the upper portion shows road network scenarios, while5

the lower part of the figure presents the probability of GPS points matching at each segment. In the upper part of the6

figure, the red dots represent a vehicle’s moving positions on the road, which are randomly distributed. The colored link7

represents the labeled segment, where each one has its color. The labeled segment-level route is [64, 20, 21, 22, 23, 24].8

We calculate the probability of each moving point matching on the labeled segment and plot the associated result on9

the lower part of Figure 7. From the figure, we find that the fine-tuned model matches all the points and segments10

appropriately. In the figure, the matching probability of each GPS point on the corresponding segment is close to 111

instead of the confusing region such as transition area between two segments, first and last segment. Furthermore, our12

fine-tuned model performs well in the transition region. For example, the fifth GPS point is recorded between segments13

20 and 21. The summation of probability matching on two segments is close to 1, indicating that the map-matching14

model performs well.15

However, if we test the same scenario on the pre-trained Transformer model, the model can not match the first16

two points on segment 64. To compare the matching outcomes from pre-trained and fine-tuned models in detail, the17

probability results for the first two GPS points are shown in Figure 8. In Figure 8, the labeled point-level route is18

[64, 64, 20] for the first three points. In contrast, the matching result is [20, 20, 20] with a high matching probability19

in the pre-trained model. There is a more than 50% chance of matching the first two points at segment 20. One of the20

reasons behind this is the pre-trained model considers the first two points as the noise points which are generated at21

segment 64. To calibrate the aforementioned problems, the fine-tuning method is applied and the result sequence is22

turned to [64, 64, 20]. The probability for matching the first two points at segment 64 is improved 25.6% and 56.2%,23

respectively. Therefore, we can conclude that the fine-tuning method effectively reduces the real-to-virtual gaps be-24

tween generated and real-world trajectories. This method the model more robust to complex real-world scenarios and25

produces much more realistic results.26

Figure 7: The matching result for fine-tuned Transformer model
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Figure 8: Amplified results for the result figure

Z. Jin, J. Kim, H. Yeo, and S. Choi: Preprint submitted to Elsevier Page 24 of 34



Transformer-based Map Matching Model with Limited Labeled Data using Transfer-Learning Approach

4.3.4. Analysis on Attention Mechanism in Transformer1

In this section, we use attention mechanisms to analyze the map-matching process, which shows how the model2

considers the internal correlation of GPS points and matches the road segments throughout the input GPS trajectories.3

We extract the attention weights from the encoder and decoder layers to investigate the correlation between GPS points4

and the relationship between GPS points and road segments, respectively.5

In encoder attention weight analysis, We use the visualization tool provided by Vig (2019) to clearly see the corre-6

lations, and the result is shown in Figure 9. The upper part of the figure depicts the internal correlation of GPS points7

in the trajectory. We choose GPS 6, GPS 16, and GPS 26 as test points and see how the related points are changed8

in different GPS points. There are eight colors that represent the specific weight of each head. Here, the darker hue9

means a stronger correlation with the target point. The result shows that there is a certain range of GPS points that10

have a strong correlation with target points. Furthermore, each GPS point has its own related range. We determine11

the three related ranges from the upper figure and plot them in the lower figure to find the position of correlated points12

on the road segment in detail. In Figure, the colored boxes represent the related ranges. According to the figure, the13

GPS points, which are on the current and adjacent road segment, have a strong correlation with the target point. For14

example, in Figure 9 (b), the GPS16 has a correlation with the points fromGPS11 to GPS26 and the green box stretches15

from the end of segment 21 to the end of segment 23.16

Figure 9: Internal correlation of GPS points in the trajectory (a) correlated points of GPS6 (b) correlated points of GPS16
(c) correlated points of GPS26

In decoder attention analysis, the logarithm transformation of the weights is used to plot the figure since the value17

of the weights are too small to depict in detail. The bright part in the figure denotes large attention weights, which can18
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also be interpreted as a high correlation with decoding results. From Figure 10, we find that specific ranges of points1

have high attention weights. To determine the range, we use the threshold value of -3.15, which is the average mean and2

median of total log weights. We determine the range of GPS points that affect the matching results in decoder modules3

and depict them in Figure 10. The stated ranges are represented as colored boxes. According to the determined ranges,4

we discover that in order to match the current road segment, not only GPS points on the current road segment but5

also GPS points on neighboring segments are involved in the matching process, which has a similar result in encoder6

weight analysis. For example, the yellow box in Figure 10 illustrates the range which influences the determination of7

segment 21. The box stretches from third to nineteenth points where they are on the segment 20,21 and 22. The result8

shows that while identifying segment 22, points on segments 20 and 22 have a substantial influence on the decoding9

process. Furthermore, since there is only one segment adjacent to the first and last segments, the points from one road10

segment are used in the decoding process, implying that there is less information in the matching process compared11

to other road segment matching. As a result, there are several matching errors in the first and end segment matching12

process.13

Figure 10: Plot of the decoder attention mechanisms
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Table 4
The training time and number of parameters of the attnetional LSTM-based seq2seq model and Transformer

Model Time per epoch (s) Number of Parameters
LSTM Attn seq2seq 588.6 9,339,081

Transformer 270.4 11,281,895

4.4. Discussion1

4.4.1. Performance of the Model2

Among the three deep learning models, the Transformer-based map-matching model shows the best performance.3

The superiority of the Transformer is shown in two perspectives - robustness of the model and computational efficiency.4

First, the robustness characteristic is shownwhen the training dataset is different. Even though, the Transformer and the5

LSTM-based attentional seq2seq model trained withDGen,15m show the comparable performance, there are significant6

performance differences when they are trained by the another generated datasetDGen,0m. Transformer outperforms the7

LSTM-based attentional seq2seq model in this scenario and shows more robust performance. In the real world, if we8

cannot generate the training dataset properly, it is suggested to use the Transformer since it is more efficient to match9

the GPS trajectories onto their corresponding segments accurately.10

Second, we compare the training time to find the superiority of the Transformer model. The pre-training result11

shows that the LSTM-based attentional seq2seq model has a comparable performance with Transformer when the12

training dataset is generated trajectory with Gaussian distributed noise (�noise = 15m) (DGen,15m). To find the supe-13

riority of the Transformer model, we analyze the training time with the trainable number of parameters in the model14

and the result is shown in Table 4. The whole process is done with Intel(R) Core(TM) i7-6800K CPU @ 3.40GHZ,15

128GB RAM, and NVIDIA TITAN Xp. In the table, "Time per epoch" shows the average time for one entire transit16

of the training data through the model, and "Number of Parameters" indicates the number of trainable parameters in17

the deep learning model. The results indicate that despite having a larger number of trainable parameters, the Trans-18

former model spends less time in model training compared to the LSTM-based attentional seq2seq model (LSTMAttn19

seq2seq). The main reason is due to the parallel computation in Transformer model training. To be more specific, the20

LSTM-based models are restricted to compute in a series way due to the RNN cells, which are the main difference with21

the Transformer model. Therefore, the Transformer outperforms the LSTM-based attentional seq2seq model (LSTM22

Attn seq2seq) from the two stated perspectives. To clarify the mechanisms of the Transformer model, we further an-23

alyze the attention modules in the Transformer. We found that the GPS points, which are on the current and adjacent24

road segment, have a strong correlation with the target GPS point. Similarly, to match a segment, not only GPS points25

on the target segment but also GPS points on the neighboring segments are related to the matching process.26

4.4.2. The Effectiveness of Fine-Tuning27

From the performance evaluation results at fine-tuning stage, we conclude that the fine-tuning method can reduce28

the real-to-virtual gaps caused by the differences between generated and real data, which is beneficial in model per-29

formance improvement. In the fine-tuning results shown in Section 4.3.2, two pre-trained Transformer models show30

high performances after using the fine-tuning method. Especially, the Transformer model trained byDGen,0m becomes31

a high-performing map-matching model. Therefore, even though the prior information of the trajectories such as GPS32

noise distributions helps in training data generation and model performance improvement, the fine-tuning method with33

limited labeled data can be one of the useful approaches to improve model performance when we cannot get any prior34

information related to the target trajectories. To further find the reason for performance improvement after fine-tuning,35

we analyzed the result at the trajectory level. We found that the fine-tuned Transformer model can match the first36

several GPS points onto their corresponding segments. In other words, the fine-tuning method can effectively reduce37

the real-to-virtual gaps. The gaps are mainly caused due to different sampling rates of GPS points, noise distribution38

of GPS points between generated and real data.39

4.4.3. Real-World Implementation40

One of the limitations of deep learning-based map-matching models is that they construct models using a great41

number of labeled data, which is different from rule-based models. In contrast to previous deep learning-based models,42

our method only needs a limited number of labeled data in model development. We used the transfer learning approach43

that included pre-training with generated data and fine-tuning with limited labeled data to develop the deep learning-44
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based map-matching models. In practice, there is no need to feed the labeled data into the model development if we1

can generate trajectories that are close to the real trajectories. In other words, when we neglect the Fine-Tuning step2

of our methodology, our approach is similar to the rule-based algorithms which does not require labeled data. To3

be more specific, we found that if we pre-train the model with trajectories which has similar distribution (�noise =4

15m) with target data to do the map-matching, both LSTM-based attentional seq2seq model (LSTMAttn seq2seq) and5

Transformer show high performance. Conversely, if the pre-trained datasets are different from the target trajectory, both6

models show relatively low performance on the map-matching task. In practice, it is difficult to generate trajectories7

that are close to target trajectories precisely without prior information, which means that we cannot generate ideal8

trajectories for model pre-training.9

Therefore, to reduce the real-to-virtual gaps, we need to feed the limited number of labeled data as input to improve10

model performance. If we can develop the high-performing map-matching model with only using a small amount of11

labeled data, it is still can be considered a cost-effective approach. Nowadays, we can also find that some companies12

or groups label GPS data for trajectory applications. However, the amount of labeled data is limited due to the cost13

problem. Therefore, if we can fully utilize the limited labeled data, which can be collected in the current stage, for14

developing high-performing map-matching data, the proposed model can be highly accepted in preprocessing step in15

the trajectory-based application.16

5. Conclusion17

This study proposes a framework for developing a novel deep learning-based map-matching model in the limited18

labeled data environment. To solve the data sparsity problem in model training, a Transfer-learning approach, which19

pre-trains the model with generated data and fine-tunes the pre-trained model with real labeled data is applied. Be-20

sides, an advanced deep-learning model Transformer,is used to improve model accuracy with less computation time21

by capturing the internal correlation of input GPS points and the external relationship between input and output.22

In terms of contributions, this study has made several improvements in the field of deep learning-based map-23

matching models. To solve the data sparsity problem for developing a high-performing map-matching model, the24

transfer learning approach is adopted in this study. Specifically, a large number of trajectories are generated based on25

road network information to pre-train the model, and then a limited amount of available labeled data is used to fine-tune26

the model to reduce the real-to-virtual gaps. The proposed model shows the possibility of using generated trajectories27

to solve the map-matching problems in the urban environment. The proposed model improves matching performance28

by using the Transformer model, which considers the internal correlation of GPS points and the external relationship29

between input trajectory and output segments. This overcomes the disadvantages of the previous deep learning-based30

map-matching model that they can not take into account the data relationships and need larger computation time in31

model training. We also analyze the matching mechanisms of the Transformer in the map-matching process, which32

helps to interpret the input data internal correlation and external relation between input data and matching results.33

Finally, we consider the map-matching task from the data perspective and propose three related metrics at point and34

segment levels, which help in developing more high-performing map-matching models.35

The model’s performance is evaluated on the Gangnam DTG dataset, which contains moving patterns of taxis in36

the Gangnam district. The performance evaluation is divided into two levels: point-level evaluation and segment-37

level evaluation. The point-level evaluation mainly focuses on how the model matches each point to its corresponding38

segment correctly. Conversely, in the segment-level evaluation, the main concern is how the model matches the in-39

tegrated route (or segment-level route) correctly. Both levels are evaluated in terms of AHM, F-score, and BLEU,40

which are widely used metrics in sequence modeling. At the pre-training stage, the results show that the generated41

data-based pre-trained models show better performance than rule-based models (FMM and ST-matching). In addition,42

the Transformer-based map-matching model outperforms other deep learning-based models (LSTM-based seq2seq43

and LSTM-based attentional seq2seq models) in three different datasets. At the fine-tuning stage, we fine-tune the44

two pre-trained Transformer-based map-matching models trained by different generated datasets. The results indicate45

that fine-tuning method can reduce the real-to-virtual gaps in both models. Specifically, in the pre-training model46

which shows better performance, fine-tuning is principal to make the results more realistic. In the other pre-training47

model, fine-tuning is mainly used to improve model performance. To further analyze the results that how the fine-48

tuning method makes the result more realistic, we choose one noisy trajectory as an example. The results show that the49

pre-trained model can match the first two points correctly after fine-tuning. In addition, we also analyze the attention50

mechanisms to find the internal correlation of GPS points and the external relationship between input trajectory and51
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output results. The results show that the points which are on the current and adjacent road segment have a strong1

correlation with the target point. In addition, similar to the previous findings, while identifying a certain segment, not2

only the points on the target segment but also the points on the neighboring segments have correlations.3

There are several directions in which the current study can be extended to further improve the map-matching4

performance. First one is to improve the quality of generated data for model pre-training. Currently, we use a simple5

rule to generate the trajectories for pre-training. There are, however, other variables that can help improve matching6

performance in addition to the proposed method. For instance, traffic volumes for each road segment, traffic signal,7

and road geometry information can all provide additional information to further improve the quality of generated data.8

Also, the complexity of the network, GPS positioning errors will highly affect the quality of the generated dataset9

for model training. In this case, there are two general solutions to solve this problem. The first one is to increase the10

number of labeled trajectories. If the amount of labeled trajectories is enough to train the model, it is preferable to fine-11

tune all the model’s layers even if the dataset is different from the generated dataset. However, this kind of approach is12

laborious and costs a lot. The other solution is to fine-tune a suitable amount of layers in the model. Although it is cost-13

effective, the model accuracy can be relatively lower than the previous solution and it is hard to find an appropriate14

number of layers to do fine-tuning. Therefore, in future work, we will further analyze the requirements of labeled15

data with more complex scenarios and test our model in different scenarios. In addition, it is difficult to identify the16

relationship between the model performance and the number of real labeled data used in fine-tuning due to the lack of17

real labeled trajectories. Thus, we will increase the number of labeled data to find the stated relationship. Furthermore,18

we will test the model performance under different types of data such as buses, trucks, and normal vehicles. In this19

research, we manually label preprocessed Taxi trajectories onto their corresponding sequence of segments. Therefore,20

there are no restrictions on test data to develop the map-matching model. To be more specific, the deep learning-based21

map-matching models are efficient to extract and use the knowledge from the historical data to solve the problems. As22

a result, if we have other types of data like vehicle or bus labeled trajectories, we can also develop the corresponding23

model and test their performance.24
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