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8 ABSTRACT9
10

Parking is a crucial element of the driving experience in urban transportation systems. Especially11

in the coming era of Shared Autonomous Vehicles (SAVs), parking operations in urban trans-12

portation networks may inevitably change. Parking stations are likely to serve as storage places13

for unused vehicles and depots that control the level-of-service of SAVs. This study presents14

an Analytical Parking Planning Model (APPM) for the SAV environment to provide broader in-15

sights into parking planning decisions. Two specific planning scenarios are considered for the16

APPM: (i) Single-zone APPM (S-APPM), which considers the target area as a single homoge-17

neous zone, and (ii) Two-zone APPM (T-APPM), which considers the target area as two different18

zones, such as city center and suburban area. S-APPM offers a closed-form solution to find the19

optimal density of parking stations and parking spaces and the optimal number of SAV fleets,20

which is beneficial for understanding the explicit relationship between planning decisions and21

the given environments, including demand density and cost factors. In addition, to incorporate22

different macroscopic characteristics across two zones, T-APPM accounts for inter- and intra-23

zonal passenger trips and the relocation of vehicles. We conduct a case study to demonstrate24

the proposed method with the actual data collected in Seoul Metropolitan Area, South Korea.25

We find that the optimal densities of parking stations and spaces in the target area are much26

lower than the current situation. Sensitivity analyses with respect to cost factors are performed27

to provide decision-makers with further insights.28

29

1. Introduction30

Parking is one of the crucial elements of the driving experience in urban transportation systems. However, as31

the number of vehicles in large cities around the globe increases rapidly, the lack of parking spaces has become a32

severe problem. From the perspective of the transportation system operator, the need to store vehicles is progressively33

increasing, which has led to the transformation of valuable real estate into parking garages (Nourinejad et al., 2018).34

Moreover, from the perspective of individual users, it is required to spend more time on the road searching for empty35

parking spaces, which eventually worsens overall traffic conditions (Lam et al., 2006). As a result, to improve the36

overall efficiency of the transportation system, it is necessary to study efficient parking operations.37

A typical vehicle spends around 95% of its lifetime sitting in a parking space (Bates and Leibling, 2012). If we38

can utilize these unused vehicles to serve other travel demands, there is a possibility of reducing overall system costs,39

including vehicle ownership and parking operation. The idea behind ‘Shared Autonomous Vehicles’ corresponds to40

this possibility (Shaheen and Chan, 2016). Shared Autonomous Vehicles (SAVs) are the combination of growing41

shared mobility services (i.e., car-sharing and ride-hailing) and emerging autonomous vehicle technology Wang et al.42

(2022). SAVs can enable cost savings, provide convenience to users, and lead to sustainable transportation by reducing43

vehicle usage (Narayanan et al., 2020b; Ko et al., 2021; Jorge and Correia, 2013).44

In the coming era of SAVs, it is inevitable to change parking operations in urban transportation networks (Zhang45

and Guhathakurta, 2017; Golbabaei et al., 2021). Parking stations are likely to serve as storage places for unused46

vehicles and depots that control the level-of-service of SAVs. As the market penetration of SAVs increases, there47

may be two main changes related to parking operations. First, parking demand is likely to be reduced because overall48

vehicle usage is likely to decrease (Zhang and Guhathakurta, 2017; Narayanan et al., 2020b). According to previous49
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research, more than 25% of individuals are willing to give up their vehicle ownership given the availability of an SAV1

alternative (Menon et al., 2019). Also, one SAV can replace from 1.93 to potentially ten conventional individually2

owned vehicles (Lokhandwala and Cai, 2018; Fagnant and Kockelman, 2014). Second, the spatial distribution of3

parking stations (parking lots) may be fundamentally rearranged (Zhang, 2017). It may be possible to relocate parking4

stations outside the city center; SAVs may travel from parking stations to passengers because SAVs can travel at a low5

cost (Kröger and Kickhöfer, 2017).6

Despite many studies on parking operations with the dominance of SAVs, most studies have used simulation-based7

approaches. However, such approaches have limitations. They require massive effort and cost (i) to acquire appro-8

priate and detailed data and (ii) to set up and run computationally heavy simulations to obtain appropriate solutions.9

Consequently, solutions from simulation-based approaches rely highly on the quality of collected data so that proper10

solutions can only be found when a sufficient amount of explanatory data exists for simulation. Moreover, simulation11

results for a particular situation are difficult to generalize and apply to different situations. The findings from the sim-12

ulation results from a certain city cannot be directly applied to another city’s planning problem, since the results are13

‘site-specific.’14

In this study, to overcome the limitations of simulation-based approaches, we present an Analytical Parking Plan-15

ning Model (APPM) with SAVs. Usually, analytical models focus primarily on functional systemic relationships be-16

tween planning variables and the objective function. Based on the mathematical approximations presented in Daganzo17

and Ouyang (2019b), we can simplify the parking operation of urban transportation systems with SAVs. By using this,18

only macroscopic data of target cities (or area) is needed, instead of detailed data required in simulation analysis. Ana-19

lytical models are used to identify generally applicable insight on planning decisions; if detailed data are available, this20

insight can be further improved and refined through simulations for target areas if necessary. Similarly, the proposed21

model in this study explicitly explains the inter-relationship among the parking planning variables together with the22

other important exogenous factors, such as land cost and vehicle operating costs, in a closed form. The required data to23

use the proposed model is much simpler than the data required for simulation-based approaches, which overcomes the24

first limitation of simulation-based approaches. Also, using a closed form can overcome the significant computation25

inefficiency of simulation-based approaches, since the solutions can be calculated by one shot.26

We use two scenarios to describe parking operations in a given urban traffic network, the Single-zone Analytical27

Parking Planning Model (S-APPM) and Two-zone Analytical Parking Planning Model (T-APPM) to properly design28

a model structure that describes the parking operation with SAVs. S-APPM considers the target region a single zone29

with macroscopic characteristics for parking planning decisions. As a result, the derived optimal parking planning30

decisions are assumed to be the same in all sub-regions in the target region. On the other hand, T-APPM considers the31

target region as two distinguishable zones, usually represented as a city center and suburb. As a result, it is possible to32

consider the effects of different macroscopic characteristics of each zone (such as passenger demand, land cost, average33

speed, etc.) on parking planning decisions. Also, we conduct case studies for each model to demonstrate the sensitivity34

of the model on the cost factors and the effect of relocation between zones on parking planning. The contributions in35

this paper are summarized as follows:36

• To the best of our knowledge, it is the first to propose analytical models for parking planning, especially with37

SAVs.38

• We formulate the parking operation problems with total operating cost as an objective function, and we carefully39

derive the parking operation variables in the objective functions for S-APPM (Section 3) and T-APPM (Section40

5). The models explicitly explain the inter-relationship among the variables together with the other important41

exogenous factors.42

• We conduct the case studies to give general insights on the proposed model with extensive sensitivity analyses43

on cost parameters for each parking operation variable. (Section 4, Section 6)44

The organization of this paper is as follows. We present S-APPM in Section 3 and solve the objective function to45

derive the decision variables and parking operational variables. Then, in Section 4, a case study of Seoul, South Korea,46

is presented to further elaborate on our findings for S-APPM. T-APPM is presented in Section 5 by extending S-APPM47

with the relocation of vehicles between two zones. A case study of the Seoul Metropolitan Area, including Seoul and48

other cities near Seoul, is presented in Section 6. Finally, in Section 7, we conclude our study by summarizing the key49

findings and contribution of this study, as well as addressing limitations and proposing future research. The notations50

used in this paper are listed in Appendix A.51
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2. Literature Review1

The emergence of shared autonomous vehicles (SAVs) is expected to bring significant changes to urban trans-2

portation systems, including the way in which parking infrastructure is planned and managed. As SAVs are expected3

to operate more efficiently and have higher utilization rates than conventional vehicles, the demand for parking spaces4

may decrease in some areas while increasing in others. This presents a unique challenge for urban planners and pol-5

icymakers, who must optimize parking infrastructure to meet the changing demands of SAVs. However, despite the6

increasing interest in SAVs, the literature on parking optimization in the context of SAVs is still relatively limited.7

Several studies have examined the potential impact of SAVs on urban transportation. Fakhrmoosavi et al. (2022)8

conducted a study to explore the effects of various parking strategies on Shared Autonomous Vehicle (SAV) fleets,9

taking into account the escalating demand for ride-hailing services. The study highlighted the potential of employing10

parking pricing as a tactical instrument to incentivize passengers to choose shared rides. This, in turn, could alleviate11

traffic congestion that arises from vehicles searching for parking spaces. Yan et al. (2020) presented a microsimulation12

study on the performance of SAV fleets in the Minneapolis-Saint Paul region, examining the impacts of trip densities13

and parking restrictions. Results suggest that SAVs can serve at most 30 person-trips per day with less than 5-minute14

wait time, generating 13% more vehicle-miles traveled (VMT), but with dynamic ride-sharing (DRS), SAV VMT fell15

by 17%. The paper also estimates the potential energy savings and emissions reductions with hybrid and battery-16

electric SAV fleets. Oh et al. (2020) examined the potential impacts of Automated Mobility-on-Demand (AMOD) in17

Singapore through agent-based simulation. The study utilizes an activity-based model system to model demand and a18

traffic simulator to model the operations of the AMOD fleet, analyzing the impacts of AMOD from the perspectives of19

transportation planner, fleet operator, and user. The findings suggest that an unregulated introduction of AMOD could20

increase network congestion and Vehicle-Kilometers Traveled (VKT), highlighting important policy implications for21

future deployments of AMOD.22

Other studies have focused specifically on the impact of SAVs on parking demand and infrastructure. Zhang et al.23

(2015) used an agent-based simulation model in a hypothetical city to estimate the potential impact of an SAV system24

on urban parking demand. They found that the use of SAVs could significantly reduce parking demand, particularly25

in areas with high population density. Similarly, Zhang and Guhathakurta (2017) explored the potential impact of26

SAVs on urban parking demand using an agent-based simulation model. The study estimates that SAVs could elimi-27

nate up to 90% of parking demand for clients with a low market penetration rate of 2%. The results also suggest that28

different SAV operation strategies and client preferences may result in different spatial distribution of urban parking29

demand. Azevedo et al. (2016) used SimMobility to analyze the impact of demand and supply of autonomous mobility30

on demand (AMoD) in Singapore. This study used an optimization algorithm to solve the facility location problem to31

find optimal locations for a fixed number of parking stations. The results showed that the use of SAVs could signifi-32

cantly reduce the number of parking stations required, while still providing adequate service levels to users. Kondor33

et al. (2018) considered the distance an SAV can travel to the nearest parking station as a constraint in estimating the34

required number of parking stations. They found that the use of SAVs could reduce the number of parking stations35

required, particularly in areas with high population density. Okeke (2020) presented a case study at the University of36

West England to analyze the impacts of autonomous vehicle technology on parking operations. They used agent-based37

simulation and a parking model to study the relocation of parking stations outside city centers. They found that SAVs38

would allow parking stations to be relocated outside city centers, reducing congestion and improving accessibility.39

Zhang andWang (2020) analyzed the potential impact of SAVs on parking demand reduction in Atlanta by developing40

an agent-based simulation model. The study examines the spatial and temporal parking reduction trends with mixed41

travel modes from 2020 to 2040 and suggests that parking demand could decrease by over 20% after 2030, particularly42

in core urban areas. However, parking demand in residential zones may double, creating transportation equity con-43

cerns, and parking relocation may result in a considerable amount of empty Vehicle Miles Traveled (VMT). The paper44

suggests that proactive policymakers will need to modify land use regulations and travel demand management policies45

to reap the benefits brought by SAVs and mitigate associated issues. Wang and Zhang (2021) examined the impact46

of urban form on the performance of SAVs through simulation experiments using data collected from 286 cities. The47

study identifies critical urban form measurements correlated with SAV performance and suggests that SAVs are more48

efficient and generate less Vehicle Miles Traveled (VMT) in denser cities with more connected networks and diversi-49

fied land use development patterns. The results provide insights for land use and transportation policies to mitigate the50

adverse effects of SAVs and generalize existing SAV simulation results to other U.S. cities.51

However, the majority of previous studies have focused on the impact of SAVs on urban transportation systems52
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and parking infrastructure, using agent-based large-scale simulations that require significant computational resources.1

While these studies have provided valuable insights into the potential benefits and challenges of SAVs, they may not2

be practical for decision-makers who require more efficient and effective methods to optimize parking infrastructure.3

In light of the challenges associated with using large-scale simulations for SAV parking optimization, there is a4

need for more efficient and effective methods. Analytical modeling approaches offer an attractive alternative, as they5

can provide general insights into parking optimization while requiring fewer and less detailed inputs.6

Daganzo and Ouyang (2019a) proposed a framework to model transit systems, including shared and non-shared7

systems. The framework provides approximate formulas for many cases of interest but is not space-tracking and8

is deterministic. The framework can be used to analyze the performance and efficiency of various transit systems.9

Several recent studies have used analytical modeling for shared mobility, following Daganzo and Ouyang (2019a). For10

example, Bahrami et al. (2022) analyzed the benefits of offering solo and pool services for on-demand ride-hailing,11

while Kim and Roche (2021) proposed an optimization model for flexible-route bus services in low to mid-demand12

density areas. Daganzo et al. (2020) examined the benefits of introducing upper bound guarantees to detour distances13

in ride-sharing services, while Kim et al. (2019) explored the benefits of flexible-route bus systems serving passengers14

at their doorsteps in areas with low demand densities. Finally, Papanikolaou and Basbas (2021) examined Demand15

Responsive Transport (DRT) services as a viable mobility service for low demand interurban areas. These studies16

provide insights into the role and potential markets of shared mobility services and the need for viable business models.17

Analytical modeling offers a more efficient and effective approach to parking optimization in the context of SAVs,18

as it allows for the development of general and insightful designs that require fewer and less detailed inputs than19

large-scale simulations. Such models can provide decision-makers with the tools and knowledge they need to optimize20

parking infrastructure in a more practical manner. However, the literature currently lacks an overarching model that can21

encompass a large family of systems, making it difficult to compare and evaluate different approaches in a generalized22

and comprehensive way. The proposed Analytical Parking Planning Model (APPM) presented in this study aims to23

fill this gap by providing a general analytic framework that can be used to model the steady-state performance of24

various demand-responsive transit systems, including SAVs. This framework can help mobility service providers25

answer important questions related to service offerings, service quality, resource acquisition, and cost management26

while meeting the level of service target.27

3. Single-Zone Analytical Parking Planning Model28

To be consistent with the previous demand-responsive shared mobility model without the parking state (Daganzo29

and Ouyang, 2019a), we consider a given homogeneous target region with a size of R [km2] simplified into a single30

zone with uniform origin and destination (O-D) demands �t [veh∕km2∕hr], which vary by time window t. Time31

windows associated with the daily maximum and minimum demands are designated by t�max and t�min , respectively.32

Figure 1 shows the operation scenario for parking stations with SAVs. The blue circles represent the parking stations33

installed in the target region. The density of the parking stations is denoted as x [stations∕km2], parking spaces in the34

target region is denoted as y [spaces∕km2], and the average parking spaces per station z [spaces∕station] is y∕x. The35

red line represents a single passenger demand in the scenario. When a passenger demand is generated, an SAV in the36

nearest not-empty parking station is assigned to the passenger, cruises to the origin location of the passenger, and picks37

up the passenger. After pickup, the SAV delivers the passenger to the destination. Then, the SAV cruises to the nearest38

not-full parking station and awaits the next passenger assignment. We assume that the target region is homogeneous,39

whichmeans that it has homogeneous conditions and variables, such as uniformO-D demand and uniformly distributed40

parking stations and spaces. We believe that this is a reasonable simplification given the homogeneous nature of the41

zone we are modeling and the relatively large study site used in our case study.42

3.1. Optimization Framework43

The objective of this model is to minimize total operating cost in the target region by determining three variables44

related to parking space and SAV fleet planning:45

• x – density of parking stations [stations∕km2]46

• y – density of parking spaces [spaces∕km2]47

• m – number of SAV fleets [veh]48
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Figure 1: Operational scenario of parking stations with Shared Autonomous Vehicles. Blue circles represent parking
stations. SAV moves from one parking station to the origin location of the passenger (green), picks up the passenger, and
delivers the passenger to the destination (red); SAV then moves to the nearest parking station (yellow).

The objective function of the parking operation consists of three different operation costs: (i) parking station costs, (ii)1

parking space costs, and (iii) fleet costs. The objective function J of the parking operation [$∕day] is to minimize the2

overall daily average operation cost (Cost), formulated as a function of the planning variables, x, y, and m, as follows:3

J = min
x,y,m

Cost(x, y, m) = min
x,y,m

(

CxxR + CyyR + Cmm
)

, (3.1)

where Cx refers to the daily average operation cost of each parking station, such as the rental cost or prorated purchase4

cost for the land and built infrastructure on it, except for the variable costs depending on the number of parking spaces5

at the station [$∕stations∕day]; Cy stands for the daily operation cost of a unit parking space, except for the cost6

components included in Cx [$∕spaces∕day]; and Cm indicates the daily operation cost of each vehicle [$∕veh∕day],7

including a wide range of operating costs from purchasing costs, maintenance costs, energy/fuel costs, and driver8

expenses, to other service-related costs such as online platform costs.9

For passenger convenience, measures of Level-Of-Service (LOS) of SAV operation related to passenger waiting10

time can be used as constraints. In demand-responsive mobility services, ensuring short assigning time, i.e., the11

elapsed time between a call and vehicle assignment, and assigned time, i.e., the waiting time between the assignment12

and passenger pickup, is important (Lees-Miller, 2016; Daganzo and Ouyang, 2019a). In SAV operations, as an13

assignment can be automatically conducted in a top-down manner from the control center, assigning time can be14

ignored. Thus, we take into account a LOS constraint that restricts only the average assigned time so that it does not15

exceed a pre-selected threshold, as in:16

TA,t ≤ T0,∀t. (3.2)
where TA,t is the average passenger waiting time, only consisting of assigned time, in time window indexed by t (in17

state A), that means “Assigned”, and T0 is the threshold, the maximum allowed average passenger waiting time. This18

constraint is likely to be binding when travel demand is the highest in t�max .19

Last, it is impossible to park additional SAVmore than z = x∕y at one parking station. This constraint is especially20

important when travel demand is the lowest in t�min .21
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Figure 2: Workload transition network representation of Single-zone Parking Planning Model (S-APPM). Circles represent
the states, and the directed lines represent transitions between states. The dotted line (from C to A) is also possible in
reality.

3.2. SAV Operation Model with Parking1

To analytically formulate the LOS constraint as a function of the decision variables, we model SAV operations with2

parking planning as a workload transition network graph presented in Figure 2, inspired by the demand-responsive3

transit model proposed by Daganzo and Ouyang (2019a). The nodes of the graph in Figure 2 represent the operational4

states of SAVs, and the links stand for the transitions between them. An SAV is in either of four different states:5

• P (Parked): the vehicle is idle and parked at the parking station;6

• A (Assigned): once assigned to a passenger, the vehicle is moving to the passenger’s current location from the7

previous parking station;8

• S (Serving): the vehicle is delivering a passenger from his/her origin to destination;9

• C (Cruising to return): After serving, the empty vehicle is cruising to the nearest not-full parking station.10

Once a passenger engages service, we assume that a vehicle parked at the nearest non-empty station is assigned to11

the passenger, resulting in a change of operational state of the assigned vehicle from state P to stateA (P → A). Then,12

the assigned vehicle moves from the parking station to the origin of the passenger’s trip (A → S). When the vehicle13

arrives at the origin of the passenger’s trip, the vehicle picks up the passenger and travels from origin to destination.14

The operational state changes from Serving S toCruising to returnC when the passenger gets off the vehicle (S → C).15

After completion of the passenger’s trip, the vehicle moves to the nearest not-full parking station and waits for the next16

assignment (C → P ).17

In reality, it is also possible to allocate a new passenger request to the nearest vehicle in state C . In other words,18

vehicles that are moving to a parking station can be allocated to another passenger’s request before they arrive at the19

parking station, as represented by the dotted line in Figure 2. However, for the mathematical simplicity of this model,20

we neglect this state transition. Nonetheless, the proposed model can provide a lower bound on the efficiency of the21

system because including the state transition from state C to state A will increase the overall efficiency of the SAV22

system through extra operational flexibility. The lower bound can provide us with information about the minimum23

benefits of SAV operations with optimal parking and fleet planning, which is particularly important to determine24

the feasibility of introducing the system. Forcing SAVs to park between trips might add empty VMT (i.e., miles25
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Figure 3: Graphical expression of change of the number of SAV fleets over time. t�max represents the time window associated
with maximum demand and t�min represents the time window associated with minimum demand. At a given time window
t, the red portion represents the number of SAV fleets parked at parking stations (nP (t)), the blue portion represents the
required number of SAV fleets in parking station, and the green portion represents the number of SAV fleets actively
running on the roads.

traveled without a passenger) to the system and inflate congestion. This issue can be addressed by adopting approaches1

such as Dynamic Ride Sharing, as suggested by Yan et al. (2020), or by introducing state-specific cost variables to2

minimize eVMT. Dynamic Ride Sharing enables the real-time matching of passenger requests with available SAVs,3

thus reducing eVMT and improving the overall efficiency of the system. On the other hand, introducing state-specific4

cost variables allows for more targeted optimization, accounting for the costs associated with eVMT and parking, and5

helping to further minimize empty vehicle miles traveled. Both strategies have the potential to alleviate congestion and6

improve the efficiency of SAV deployments in urban environments. However, implementing these approaches may also7

increase the complexity of the model and require more sophisticated optimization techniques. Future research could8

explore the integration of these strategies to develop more accurate and practical solutions for SAV deployment in9

urban transportation systems.10

The fleet size in each state in the given time window, denoted by nA(t), nS (t), nC (t), and nP (t), respectively, vary11

depending on the time-dependent passenger demand �t, as well as the decision variable.12

m(t) = nA(t) + nS (t) + nC (t) + nP (t), (3.3)
The required number of fleets in time window t, needed to ensure user LOS, can be defined as the summation of13

the required number of fleets in each state to ensure the LOS as shown in Equation 3.4:14

mreq(t) = nreqA (t) + nreqS (t) + nreqC (t) + nreqP (t), (3.4)
where nreqA (t), nreqS (t), nreqC (t), and nreqP (t) refer to the required number of fleets in state A, S, C , and P , respectively.15

As shown in Figure 3, the SAV fleet size m is constant over the whole day, so the minimum required fleet size m∗16

is equal to the maximum required number of SAVs among all the time windows of the day, i.e., the required fleet size17

in time window t�max when the demand is at the maximum level, as shown in Equation 3.5:18

m∗ = max
t
(mreq(t)). (3.5)
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The three components on the right-hand side of Equation 3.4, nreqA (t), nreqS (t), and nreqC (t), can be expressed based1

on Little’s Law with exogenous and endogenous planning variables. In other words, the fleet sizes in each state are2

calculated by multiplying the demand (�tR) by the expected time spent in each state (TA, TS , and TC ). The last3

component, nreqP (t), is a buffer to ensure that there are not too many (not to exceed the parking space limit at a station)4

and not too few (to ensure the level-of-service by guaranteeing an idle vehicle to assign to any demand generated5

nearby) vehicles at the parking station. nreqP (t) can be derived based on the variance of the vehicle inflow and outflow6

at each parking station.7

First, the fleet size in state A in time window t, nreqA (t), is derived as follows:8

nreqA (t) = �tRTA,t, (3.6)
where, as used in Equation 3.2, SAVs’ assigned time TA,t is equal to the average passenger waiting time.9

In some cases, especially when passenger demand is high, it is possible that the parking station nearest to the10

origin of the passenger does not have an idle SAV to serve passenger demand. In this case, it is required to send an idle11

SAV from the second-nearest parking station, and so on. As a result, we consider a confidence level p, defined as the12

probability that a passenger is served by an SAV from the nearest parking station. The number of fleets in state A can13

be expressed as Equation 3.7. If p is sufficiently high, p→ 1, the probability that an SAV from the i-th nearest parking14

station is assigned to a passenger, (1 − p)i ⋅ p, becomes almost zero, so we ignore the corresponding terms.15

nreqA (t) = �tR
(

pT 1A,t + (1 − p)
(

pT 2A,t + (1 − p)(pT
3
A,t + (1 − p)(⋯)

))

≈ �tR
(

pT 1A,t + (1 − p)
(

pT 2A,t
))

= �tR
(

pT 1A,t + (1 − p) ⋅ �pT
1
A,t

)

= �tRT 1A,t
(

p + �p − �p2
)

, (3.7)

where T iA,t refers to the average travel time from the i-th nearest parking station to the origin of the passenger, and �16

is the incremental ratio of the travel time, i.e., � ≡ T 2A,t∕T
1
A,t. From Equations 3.6 and 3.7, TA,t is T 1A,t(p + �p − �p2).17

Note that this assumption only considers the two nearest parking places. Since we assume p is close to 1, this implies18

a high probability of finding a parking spot within the two nearest parking places. If p is small and the vehicle has to19

come from a faraway parking station, it would decrease the level-of-service. Therefore, we reasonably assume that we20

only consider the two nearest parking places for this study, but this assumption can be modified to better fit specific21

applications.22

Second, the number of fleets in state S, nreqS (t), is derived as follows:

nreqS (t) = �tRTS,t = �tR
lt
vt
. (3.8)

As TS,t is the average travel time from origin to the destination for all passengers in time window t, it can be simply23

derived with average trip length lt [km] considering the circuity of roads and the average speed vt [km∕hr].24

Third, the fleet size in state C in time window t is formulated as follows:
nreqC (t) = �tRTC,t, (3.9)

where TC,t is the expected time a vehicle spends in stateC . TC,t is the travel time from the destination of the passenger to25

the nearest parking station. When passenger demand is low, it is possible that the parking station nearest the destination26

of the passenger will be full and there are no parking spaces left. In this case, it is required to send the SAV fleet to27

the second-nearest parking station, and so on. As a result, we consider a confidence level q, the probability that the28
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nearest parking station is not full. The fleet size in state C in time window t can be expressed as follows:1

nreqC (t) = �tR
(

qT 1C + (1 − q)
(

qT 2C + (1 − q)(qT
3
C + (1 − q)(⋯)

))

≈ �tR
(

pT 1C + (1 − q)
(

qT 2C
))

= �tR
(

qT 1C + (1 − q) ⋅ �qT
1
C
)

= �tRT 1C
(

q + �q − �q2
)

, (3.10)

where T iC,t refers to the average travel time from the destination of the passenger to the i-th nearest parking station and2

� is the incremental ratio of travel time between T 2C,t and T 1C,t, which is equivalent to � ≡ T 2A,t∕T
1
A,t in Equation 3.7.3

Based on the assumption of uniformly distributed O-D demands and parking station, T 1C,t is equal to T 1A,t.4

Finally, the required fleet size in state P , nreqP (t) can be derived by accounting for the variance of the number of5

idle vehicles parked at each parking station. Variances of vehicles coming into a parking station and vehicles going6

out of a parking station are �tRHI∕x each, whereH is the length of the time window, and I is the mean-to-variance7

ratio of the number of vehicles parked at each parking station. To be more specific, �tRH is the mean origin demand8

and destination demand for the whole area, �tRH∕x is the mean origin/destination demand for one parking station.9

We use the mean-to-variance ratio I to calculate the variance as �tRH∕x (I is assumed to be 1 in the case study10

by assuming the O-D event follows Poisson distribution). Consequently, the variance of vehicle number at a parking11

station during a time window is 2�tRHI∕x by assuming that �tRH∕x is sufficiently large. It is assumed that, by12

repositioning vehicles, the number of vehicles at each parking station is rebalanced at intervals of duration H. The cost13

of repositioning is shown to be proportional toH−1∕2 but independent of the decision variables x, y, and m considered14

in this paper (See Section 7.2.2.1 in Daganzo and Ouyang (2019b)). Thus, the repositioning cost is omitted from the15

cost-minimizing objective function because the repositioning cost is constant ifH is assumed to be given.16

When passenger demand is high, the fleet size of idle vehicles at each parking station will be at a minimum be-17

cause most vehicles will be on the road serving passenger demand. In such circumstances, there must be at least a18

certain number of parked vehicles to guarantee the level-of-service, preventing long waiting times for passengers and19

assignment failures. We have already set a confidence level p to ensure vehicle assignment from the nearest parking20

station in Equation 3.7. Using p, the required parking spaces per parking station zreq(t) is formulated as follows:21

zreq(t) = Φ−1(p)

√

2�tRHI
x

, (3.11)

where Φ is the standard normal distribution. The required density of parking spaces in the target region at demand �t22

is as follows:23

yreq(t) =
x ⋅ zreq(t)

R
= Φ−1(p)

√

2�tHIx
R

. (3.12)

As a result, the required fleet size in state P is formulated as:24

nreqP (t) = yreq(t)R = Φ−1(p)
√

2�tRHIx. (3.13)
Finally, the density of parking station x can be expressed with respect to T 1A,t. If the parking stations are uniformly25

distributed, the expected value of the distance between random demand to the nearest parking station, denoted by d(x),26

is:27

E[d(x)] = T 1A,tv

E[d(x)] ≈ �
√

x
, (3.14)
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where the first expression is given by the definition of TA,t and the second expression is referenced from Daganzo and
Ouyang (2019b). As a result, T 1A,t is expressed as a function of the decision variable x and vice versa: As a result,

T 1A,t =
�

vt
√

x
,

x = �2

(vt)2
⋅

1
(T 1A,t)

2

(3.15)

According to Equations 3.6, 3.8, 3.9, and 3.13, the number of fleets in each state increases as the passenger demand1

(�t) increases. We reasonably assume that the average ground speed at the maximum demand, vt�max is the slowest of2

the day, i.e., vt�max = vmin. Similarly, we assume that the average ground speed at the minimum demand, vt�min is the3

fastest of the day, i.e., vt�min = vmax. Thus, the numbers of vehicles in states A, S, C , and P are the highest during4

the peak time:5

(

nreqA (t�max ) =

)

�max
�R

vmin
√

x
(p + �p − �p2) ≥ �t

�R
vt
√

x
(p + �p − �p2)

(

= nreqA (t)

)

,

(

nreqS (t�max ) =

)

�max
lt�max
vmin

≥ �t
lt
vt

(

= nreqS (t)

)

,

(

nreqC (t�max ) =

)

�max
�R

vmin
√

x
(q + �q − �q2) ≥ �t

�R
vt
√

x
(q + �q − �q2)

(

= nreqC (t)

)

,

(

nreqP (t�max ) =

)

Φ−1(p)
√

2�maxRHIx ≥ �tΦ−1(p)
√

2�tRHIx

(

= nreqP (t)

)

,∀t.

. (3.16)

Therefore, the minimum required fleet size m∗ equals the required fleet size in t�max according to Equation 3.5, i.e.,6

argmaxt (mreq(t)) = t�max7

When the demand rate is the lowest in t�min , the highest number of idle vehicles are parked, so the confidence level8

p (the probability that there is at least one idle vehicle at the station nearest to a demand) can be set to 1 for further9

efficiency. On the other hand, during the peak hour t�max , the confidence level q can be reasonably assumed to be 1 in10

the time window t�max . Based on this, it is possible to simplify and rewrite the equations of m∗ by using the maximum11

passenger demand (�max) , as follows:12

m∗ = �maxR

( lt�max
vmin

)

+ �maxRT 1A,t�max
(1 + p + �p − �p2) + �Φ−1(p)

√

2�maxRHI
1

vminT 1A,t�max
, (3.17)

Based on the operation depicted in Figure 1, extra vehicles beyond the required fleet sizes for states A, S, and C13

are not needed. In other words:14

nA(t) = n
req
A (t), nS (t) = n

req
S (t), nC (t) = n

req
C (t),∀t, (3.18)

On the other hand, as shown in Figure 3, the number of vehicles parked at parking stations in t, nP (t), is not always15

the same as nreqP (t), but can be found as Equation 3.19.16

nP (t) = m∗ −
(

nA(t) + nS (t) + nC (t)
)

, (3.19)
The number of vehicles not parked in stations, nA(t) + nS (t) + nC (t), is the lowest in t�min , so the number of parked17

vehicles is the highest in t�min . The minimum required number of parking spaces y∗R is the summation of the daily18
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maximum number of required parking spaces, i.e., nP (t�min ), and additional buffer spaces to guarantee that each parking1

station is not full by confidence level q, Φ−1(q)√2�minRHIx. As a result, the optimal density of parking spaces can2

be found as shown in Equation 3.203

y∗ =
m∗ −

(

nA(t�min ) + nS (t�min ) + nC (t�min )
)

+ Φ−1(q)
√

2�minRHIx

R

=

(�maxlt�max
vmin

−
�minlt�min
vmax

)

+
(

(1 + p + �p − �p2)�max − (1 + q + �q − �q2)�min ⋅
vmin
vmax

)

T 1A,t�max

+ �
vmin

(

Φ−1(p)

√

2�maxHI
R

+
vmin
vmax

Φ−1(q)

√

2�minHI
R

)

⎛

⎜

⎜

⎝

1
T 1A,t�max

⎞

⎟

⎟

⎠

. (3.20)

3.3. Solution of Optimal Parking Planning4

The objective function in Equation 3.2 is reformulated in terms of T 1A,t�max in Equation 3.21, which is a function of5

the remaining sole decision variable x (see T 1A,t = �
vt
√

x
from Equation 3.15). There are four terms in Equation 3.21:6

the constant term, 1
(T 1A,t�max

)2
, 1
T 1A,t�max

, and T 1A,t�max .7

min
TA

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

(

(

Cy + Cm
)

(�maxlt�max
vmin

)

R − Cy

(�minlt�min
vmax

)

R

)

+
Cx�2R
(vmin)2

1
(T 1A,t�max

)2

+
(�(Cy + Cm)

vmin
Φ−1(p)

√

2�maxHIR +
�Cy
vmax

Φ−1(q)
√

2�minHIR
)

1
T 1A,t�max

+
(

(Cy + Cm)�maxR(1 + p + �p − �p2) − Cy�minR(1 + q + �q − �q2)
vmin
vmax

)

T 1A,t�max

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

s.t.TA,t�max = T
1
A,t�max

(1 + p + �p − �p2) ≤ T0,

(3.21)

For simplicity of derivation, each coefficient in Equation 3.21 are parameterized as P0, P−2, P−1, and P1 as shown8

in Equation 3.22.9

min
T 1A,t�max

Cost
(

T 1A,t�max

)

= min
T 1A,t�max

⎛

⎜

⎜

⎝

P0 + P−2
1

(T 1A,t�max
)2
+ P−1

1
T 1A,t�max

+ P1T 1A,t�max

⎞

⎟

⎟

⎠

, (3.22)

Since �max > �min and all parameters are positive by definition, P0, P−2, P−1, P1 > 0. Therefore, Equation 3.22 is10

a convex curve in the first quadrant, and has a local minimum point in the first quadrant. Consequently, we take the11
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derivative of Equation 3.22 to find the unconstrained optimal point.1

dCost
(

T 1A,t�max

)

dT 1A,t�max
= −2P−2(T 1A,t�max

)−3 − P−1(T 1A,t�max
)−2 + P1 = 0

− 2P−2 − P−1
(

T 1A,t�max

)

+ P1
(

T 1A,t�max

)3
= 0

(

T 1A,t�max

)3
−
P−1
P1

T 1A,t�max
−
2P−2
P1

= 0

, (3.23)

For simplicity in derivation, let A =
(

−P−1
P1

)

and B =
(

− 2P−2P1

)

. With realistic ranges of parameters, the discrim-2

inant (Δ) of the cubic equation is positive, and there are three distinct real roots as shown in Equation 3.24:3

Δ = −
(

4A3 + 27B2
)

> 0, (3.24)
When there are three real roots in cubic equation, François Viète (1540-1603) derived the trigonometric solution.4

The three real roots (tk) can be calculated as shown in Equation 3.25:5

t3 + pt + q = 0

tk = 2
√

−
p
3
cos

(

1
3
arccos

(

3q
2p

√

−3
p

)

− k2�
3

)

for k = 0, 1, 2
. (3.25)

The only positive solution is when k = 0. As a result,6

T 1,uA,t�max
= 2

√

−A
3
cos

(

1
3
arccos

(

3B
2A

√

−3
A

))

= 2

√

P−1
3P1

cos
⎛

⎜

⎜

⎝

1
3
arccos

⎛

⎜

⎜

⎝

6P−2
2P−1

√

3P1
P−1

⎞

⎟

⎟

⎠

⎞

⎟

⎟

⎠

. (3.26)

Equation 3.26 is the unconstrained minimum of Equation 3.21. Thus, if T0 > (p+�p−�p2)T 1,uA,t�max , the constraint7

is not binding since TA,t�max ≥ TA,t, so that the optimal point T 1,∗A,t�max = T
1,u
A,t�max

and Cost∗ = Cost
(

T 1,uA,t�max

)

. On the8

other hand, if T0 ≤ (p+�p−�p2)T 1,uA,t�max , the constraint is binding, so that the optimal point T 1,∗A,t�max =
T0

(p+�p−�p2) and9

Cost∗ = Cost
(

T0
(p+�p−�p2)

)

:10

T 1,∗A,t�max
=

⎧

⎪

⎨

⎪

⎩

T 1,uA,t�max
, if T0 > (1 + p + �p − �p2)T

1,u
A,t�max

T0
(1+p+�p−�p2) , otherwise

. (3.27)

Then, based on the optimal decision variable (T 1,∗A,t�max ), we can calculate three parking operational variables (x, m,11

and y) by using Equation 3.15, Equation 3.17, and Equation 3.20, respectively. Since we have the analytical form of12

the solution, we can calculate parking operational variables in one shot.13
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Table 1
Model parameters

Variable Units Value
R [km2] 605.24
l [km] 16.4
vmin [km∕hr] 18.0
vmax [km∕hr] 40.0
H [hr] 2
p - 0.95
q - 0.95
� - 2
I - 1
� - 0.5
T0 [min] 1

3.4. Discussion on the Integration of Dynamic Ride-sharing1

While the proposed models in this study did not incorporate pooling or dynamic ride-sharing (DRS), it is worth2

mentioning that the models we have developed can be extended to include these considerations. Pooling, which en-3

tails combining multiple passengers with similar routes into a single trip, is another important component in Shared4

Autonomous Vehicle (SAV) parking planning according to several previous studies. Fakhrmoosavi et al. (2022) in-5

vestigated the implications of parking strategies for SAV fleets, particularly in response to the growing demand for6

ride-hailing services, and emphasized that parking prices could be strategically utilized to encourage riders to opt for7

shared rides, therebymitigating traffic congestion related to parking searches. Additionally, Yan et al. (2020) conducted8

a microsimulation study assessing the performance of SAV fleets in the Minneapolis-Saint Paul area. They analyzed9

the impact of trip densities and parking restrictions, revealing that SAVs could accommodate up to 30 person-trips10

per day with a wait time of under 5 minutes. This, however, led to a 13% increase in vehicle-miles traveled (VMT).11

Interestingly, the incorporation of DRS resulted in a 17% reduction in SAV VMT, underscoring the significance of12

DRS in curbing the VMT.13

Responding to the necessity for the incorporation of pooling or DRS in parking planning for SAVs, our model14

is designed to be adaptable, serving as a foundational structure to which pooling or DRS elements can be appended.15

The modularity of our model facilitates seamless integration with other frameworks, thereby effectively addressing the16

challenges of incorporating pooling or DRS. While the proposed models in this paper do not directly address DRS,17

they are compatible with and can be complemented by the framework proposed by Daganzo and Ouyang (2019a),18

which delves into the DRS integration.19

The integration of the parking planning models and DRS is beyond the scope of this paper. Nonetheless, in Ap-20

pendix B, we briefly illustrate how a simple integration between the Single-Zone Analytical Parking Planning Model,21

and the "Shared Taxi" modeling presented in Section 5 of Daganzo and Ouyang (2019a), can be achieved. This inte-22

gration provides initial insights into the interaction between parking planning and dynamic ride-sharing.23

4. Case Study for Single-Zone Analytical Parking Planning Model24

In this section, we demonstrate S-APPM through a case study in Seoul, South Korea. Specifically, we will discuss25

changes in the density of parking stations and parking spaces as well as fleet size required to serve passenger demand26

when system is optimized. The demand distribution in Seoul is not spatially uniform, but the results, assuming unifor-27

mity, can give an upper bound of system efficiency, which is useful at the beginning of high-level planning. The next28

model, T-APPM, which will be elaborated in Section 5, can be easily extended to a general multi-zonal framework.29

To realistically account for the spatial demand heterogeneity with zonal-specific parking planning, advanced models30

can be used instead of S-APPM to provide the upper bound of the reality.31

Table 1 shows the parameters used in this case study. The area of Seoul is approximately 605.2km2. According to32
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Table 2
Corresponding decision variables in the current transportation system in Seoul

Variable Unit Value
xSeoul [stations∕km2] 524.06
ySeoul [spaces∕km2] 7,150.24
zSeoul [spaces∕stations] 13.64
mSeoul [veh] 2,703,429

Table 3
Hourly average passenger demand in Seoul. The values are in [veℎ∕km2∕ℎr]

Time Window Passenger Demand by
Personal Vehicle

Passenger Demand by
All Modes

Overall 285.11 1720.03
AM peak (7-9 AM) 765.04 4518.16
PM peak (6-8 PM) 836.94 4042.69
Off peak 181.93 1207.95

the Seoul Travel Survey1, the average trip length is 16.4km, and the minimum and maximum speeds are 18.0km∕hr1

and 40.0km∕hr, respectively. We consider discrete time windows, each of which has a length of two hours. Both2

confidence levels, to guarantee that there is at least one vehicle at each parking station (p) and that there is at least one3

parking space left at each parking station (q), are set at 0.95. We assume �, the incremental ratio of travel time, to4

be 2 based on the assumption that the target area is homogeneous. Finding the second-nearest parking station would5

be, at most, equivalent to finding the nearest parking station first and then finding the second-nearest parking station6

from there. This means that the incremental ratio between the travel time to the nearest parking station and the second-7

nearest parking station would be less than or equal to 2. To consider the most pessimistic case, we assume � = 2 to8

ensure that the results would provide a conservative estimate. The mean-to-variance ratio (I) is set to 1 assuming that9

occurrences of O-D events follow a Poisson distribution. Finally, � is set to 0.5 referenced from Daganzo and Ouyang10

(2019b).11

It is worth investigating actual numbers for each decision variable in Seoul. According to the statistics on parking12

infrastructures in Seoul2 in 2021, there are 317,181 parking stations and 4,327,614 parking spaces, including pub-13

lic parking stations, private parking stations, and residential parking stations. Therefore, as shown in Table 2, the14

density of parking stations in Seoul is 524.09 stations∕km2, and the density of parking spaces in Seoul is 7150.7215

spaces∕km2. There are approximately 13.64 parking spaces at each parking station. Moreover, there are 3,157,36116

registered passenger vehicles in Seoul, which means that there are 0.625 parking spaces for each vehicle.17

Table 3 shows the average hourly unit passenger demand (in [veh∕km2∕hr]) in Seoul according to the National18

Household Travel Survey (O-D Flow Survey) in Korea. This survey offers the average hourly flow from one district to19

another, classified by mode of transportation and purpose of trip. The mode of transportation in this survey includes20

passenger vehicles, buses, subways, high-speed rail, walking, and bicycles; we extracted passenger demand by personal21

vehicle and passenger demand by all modes in the different time windows. Table 3 shows the corresponding values in22

each time window. The values in the total row represent the average passenger demand during any time-of-day. The23

values in the Overall row represent the average passenger demand throughout the day regardless of time-of-day. The24

values in the AM peak row represent the average passenger demand during the morning peak (7-9 AM); the values in25

PM peak row represent the average passenger demand during the afternoon peak (6-8 PM). In this study, we assume26

that passenger demand in time windows other than AM and PM peaks is equal to off-peak passenger demand. As27

a result, the values in the Off-peak row were calculated based on the values in the Overall, AM peak, and PM peak28

1https://www.ktdb.go.kr/eng/index.do
2https://news.seoul.go.kr/traffic/archives/314
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Table 4
Range of cost variables used in the sensitivity analysis.

Cost Value Reference
Cm [30, 31,⋯ , 35.616,⋯ , 183.36,⋯ , 200] Estrada et al. (2021)
Cx [0.1, 0.2,⋯ , 4.9, 5.0] -
Cy [0.1, 0, 2,⋯ , 4.73,⋯ , 20] Korean Ministry of Land, Infrastructure, and Transport

rows (i.e., we calculate the total demand for one day and subtract the AM peak and PM peak demands to get the Off-1

peak demand). Recent studies have shown that the demand for SAVs is expected to increase over time (Jones and2

Leibowicz, 2019; Narayanan et al., 2020a). In our model, we consider two demand types: "Passenger Demand by3

Personal Vehicle" and "Passenger Demand by All Modes." The primary purpose of this distinction is to emphasize4

the potential reduction in required parking spaces when comparing traditional vehicle usage to a fully implemented5

SAV system. While we acknowledge that the demand for SAVs will grow gradually over time, it is crucial for urban6

planning to look ahead and prepare for the long-term impact of such systems. By considering both demand types,7

our model highlights the potential benefits of SAV deployment in reducing parking requirements and underscores the8

importance of forward-thinking planning strategies to accommodate the anticipated growth in SAV demand.9

In this case study, we analyze the results of our proposed model depending on different values for three operational10

costs: Cm, Cx, and Cy. The values and the references used for the sensitivity analysis are shown in Table 4. The daily11

operation cost of each SAV fleet (Cm) is referenced from Estrada et al. (2021), which analyzed the operational cost12

of the on-demand bus and taxi service, presenting the operational cost for different types of the powertrain (diesel13

and electric) and different sizes of vehicle (standard bus, mini-bus, and passenger car). In this study, we assume that14

each vehicle serves one passenger demand for one operation and SAVs use an electric powertrain; we use the electric15

passenger car as a reference vehicle for our study. In Estrada et al. (2021) there are two reference values without16

(35.616) and with (183.36) driver expenses. The value without driver expenses does not necessarily represent the cost17

of SAV fleets. Instead, we used it as a benchmark value while setting the range of Cm. Based on previous literature,18

such as Pakusch et al. (2020), labor costs usually take around 55% to 65% of the total operating cost of human-operated19

taxis. If human drivers are replaced by automated driving, the total operating cost of mobility service is expected to20

be reduced. However, we cannot make any reasonable assumptions about how the cost will be for SAV fleets. As21

a result, we set the range of Cm from 30 to 200 $∕veh∕day. The daily operation cost of the parking station (Cx)22

includes costs, such as amortized installation cost of the parking management system in the parking station. The daily23

operation cost of parking spaces (Cy) includes the amortized cost of purchasing the land used for the parking spaces24

and the construction cost for parking spaces. There are not many references to support our reasoning for choosing25

an appropriate value for Cx, but Cx must be smaller than or similar to Cy because the installation cost of the parking26

management system is not expensive compared to the overall land price for the parking spaces. We referenced one27

value for Cy from the declared land value announced by the Korean Ministry of Land, Infrastructure, and Transport.28

The average land price in Seoul is 2490.35 $∕m2, and the average area of each parking space is 3.3 m2. We assume29

that the land price is equivalent to a five-year rental cost with 2% annual interest rate. As a result, the amortized daily30

cost for each parking space is
(

2490.35⋅3.3⋅ 0.02365

1−
(

1+ 0.02365

)−365⋅5

)

= 4.73$∕spaces∕day considering only the land price. We set the31

range of Cy from 0.1 to 20 $∕spaces∕day for the sensitivity analysis Finally, since Cx should be similar to or less than32

Cy, we set the range of Cx from 0.0 to 5.0 $∕stations∕day.33

Figure 4 and Figure 5 show the results of sensitivity analysis. The passenger demand by personal vehicle in34

Table 3 is used for the sensitivity analysis. Figure 4 shows the result with different Cm and Cy when Cx is fixed35

to 2$∕stations∕day. Figure 5 shows the result with different Cx and Cy when Cm is fixed to 35.616$∕veℎ∕day.36

There are six results of different variables in each figure: Total cost in million USD (Cost), Passenger waiting time37

(TA = T 1A,t�max
(p + �p − �p2)) in minutes, the number of SAV fleets (m), density of parking stations (x), density of38

parking spaces (y), and the average number of parking spaces in each parking station (z).39

Figure 4 (a) shows that the total cost significantly drops as Cm decreases. This result shows that replacing human-40

driven taxis with SAVs will significantly improve cost-efficiency. In Figure 4 (b), when Cm is fixed, there is an increas-41
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Table 5
Summary of results of Case Study for S-APPM

Demand Variable Current Optimal

Personal Vehicle

x [stations∕km2] 524.09 11.66 (−97.75% )
y [spaces∕km2] 7,150.72 718.22 (−89.96%)
z [spaces∕station] 13.64 61.59 (+351.54%)
m [veh] 2,703,429 477,944.71 (−82.32%)
yR∕m [spaces∕veh] 1.601 0.9095 (−43.19%)

All Mode

x [stations∕km2] 524.09 27.51 (−94.75% )
y [spaces∕km2] 7,150.72 3728.66 (−47.86%)
z [spaces∕station] 13.64 135.52 (+893.55%)
m [veh] 2,703,429 2,549,647.66 (−5.69%)
yR∕m [spaces∕veh] 1.601 0.8851 (−44.72%)

ing tendency in TA as Cy increases. On the other hand, there is a decreasing tendency in TA as Cm increases when Cy1

is fixed. Within the realistic range of each cost value, the unconstrained minimum of Equation 3.22 (T 1,uA,t�max ) is not2

bounded by the constraint, T0 ≤ (p + �p − �p2)T 1,uA,t�max
, so the optimal value for T 1A,t�max is equal to T 1,uA,t�max . As a3

result, three operational variables can be calculated from the derived Equations in Section 3.2.4

The number of SAV fleets (m) is calculated based on Equation 3.17; the results are shown in Figure 4 (c). Similar5

to TA, there is an increasing tendency in m as Cy increases and there is a decreasing tendency in m as Cm increases.6

Furthermore, the density of parking spaces (x) is proportional to the square of reciprocal of TA as shown in Equation7

3.15. As a result, there is a decreasing tendency in x as Cy increases and there is an increasing tendency in x as Cm8

increases as shown in Figure 4 (d). Within the range of TA shown in Figure 4 (a), the TA term in Equation 3.20 is9

relatively smaller than 1
TA

term. As a result, y has a tendency opposite to TA as shown in Figure 4 (e).10

Figure 5 (a) shows the change in total cost with different values of Cx and Cy; the overall cost decreases as Cy11

decreases. In Figure 5 (b), when Cx is fixed, there is an increasing tendency in TA as Cy increases. Similarly, as Cx12

increases, there is an increasing tendency in TA. When the cost of parking facilities is low, it is relatively cost-efficient13

to install more parking stations and parking spaces. The passenger waiting time consequently decreases as the number14

of parking stations increases. Similar to the previous results in Figure 4, m follows a similar tendency with TA, while15

x and y follow a tendency opposite to that of TA.16

Table 5 shows a summary of the results for different levels of demand. The upper part of the table shows the results17

when SAVs serve current passenger demand for personal vehicles; the lower part shows the results when SAVs serve18

passenger demand for all modes, including private vehicles and public transportation. To derive these results, we used19

Cm = 35.616 to show that all vehicles are autonomous vehicles without human drivers, and Cy = 4.73 to represent the20

land price in Seoul. Cx = 2 was arbitrarily chosen.21

The values in the column named “Current” show the values corresponding to the current transportation system in22

Seoul; the values in the column marked “Optimal” show results of S-APPMwhen the SAV system replaces the current23

transportation system. The results show that it is possible to significantly decrease the number of parking stations,24

parking spaces, and vehicles by introducing the SAV system. The density of parking stations decreases 97.75% and25

the density of parking spaces for personal vehicle demand decreases 89.96%. It is notable that the average number of26

parking spaces at each parking station (z) increases from 13.64 to 61.59. The current system in Seoul has fewer parking27

spaces in one parking station and the parking stations are dense. However, the optimal solution for the SAV system28

suggests that sparse parking stations with more parking spaces at each station will be more cost-efficient. The fleet29

size (m) also significantly decreases. Approximately 5.66 personal vehicles can be replaced with one SAV. Finally, the30

number of parking spaces for each vehicle decreases from 1.601 to 0.9095. There is less than one parking space for one31

vehicle in the optimal solution. This means that at least 9.05% of vehicles are out on the road serving passengers. This32

is because of the demand setting. The passenger demand at off-peak is assumed to be the same at any time window33

other than those at AM-peak and PM-peak. With better data on passenger demand, this result can realistically be34

improved.35
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When passenger demand increases to the demand by all mode, as shown in Table 5, all three operational variables1

increase corresponding to the increase in demand. Although the density of parking stations increased, the density of2

parking spaces increased more significantly. As a result, the average number of parking spaces at each parking station3

(z) increased too. This again shows that sparse parking stations with more parking spaces at each station will be more4

cost-efficient.5

S. Choi and J. Lee: Preprint submitted to Elsevier Page 17 of 35



Optimal Planning of Parking Infrastructure and Fleet Size for Shared Autonomous Vehicles

Figure 4: Result of the sensitivity analysis between Cm and Cy, when Cx = 2$∕stations∕day

Figure 5: Results of sensitivity analysis between Cx and Cy, when Cm = 35.616$∕spaces∕day
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Figure 6: Workload representation of Two-zone Analytical Parking Planning Model (T-APPM)

5. Two-Zone Analytical Parking Planning Model1

In this section, we model the Two-zone Analytical Parking Planning Model (T-APPM) by extending S-APPM, as2

shown in Figure 6. Since T-APPM considers the target region as two distinguishable zones, the model must consider3

inter-zonal movements. First, the origin and destination of passenger trips can be located in different zones. The red4

lines in Figure 6 indicate passenger trips from one zone to another. Second, it is necessary to consider relocation5

of SAVs. When the passenger demand is higher in one direction than the opposite, the number of SAV fleets (both6

parked and running) in one zone will continuously increase. For example, in the morning peak, passenger demand7

from suburb to city center will be much higher than passenger demand from city center to suburb. When this demand8

pattern continues, there will be more vehicles in the city center and fewer vehicles in the suburb, causing a lack of9

parking spaces in the city center and a decrease in level-of-service in the suburb by increasing the passenger waiting10

time. As a result, a proper relocation strategy for SAVs should be considered. The blue lines in Figure 6 describes the11

flow of vehicles that are relocated to the other zone after finishing passenger trips.12

Figure 7 shows an example of T-APPM. A passenger calls for a trip from a suburb (colored in green) to the city13

center (colored in orange). The black line in Figure 7 (b) represents the movement of the assigned vehicle from the14

parking station to the passenger’s origin. This corresponds to the state transition from P to A and the state transition15

from A to S in S-APPM of the suburb zone. The red line in Figure 7 (b) represents the passenger trip from the suburb16

to the city center, which corresponds to the state transition from S in the suburb to C in the city center. Then, this17
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(a)
(b)

Figure 7: Example case of T-APPM. Black line represents the vehicle traveling from the parking station to passenger’s
origin, red line represents the passenger trip, and blue line represents the relocation of the vehicle.

vehicle is relocated to the suburb, which is represented by the blue line in Figure 7 (b). This corresponds to the state1

transition from C in the city center to R (relocation state), and the state transition from R to P in the suburb.2

Consider a given target region divided into two separate zones, as shown in Figure 7 (b). The inner zone (zone 1)3

colored in orange has a size of R1; the outer zone (zone 2), colored in green has a size of R2. In zone 1, the density of4

parking stations is denoted as x1, and the density of parking spaces is denoted as y1. Likewise, the density of parking5

stations in zone 2 is denoted as x2 and the density of parking stations in zone 2 is denoted as y2. The total number6

of SAV fleets is denoted asM = m1 + m2, where m1 and m2 represents the number of SAV fleets in zone 1 and zone7

2, respectively. Similar to the assumptions in S-APPM, when passenger demand is generated, an SAV in the nearest8

not-empty parking station is assigned to the passenger (P → A). This SAV cruises to the origin of the passenger9

and picks up the passenger (A → S). The SAV travels from the origin to the destination and drops off the passenger10

(S → C). If the SAV is relocated to a different zone (C → R), the vehicle moves to the nearest parking station in the11

relocated zone (R→ P ). Otherwise, the SAV moves to a parking station in the same zone from the destination of the12

passenger (C → P )13

5.1. Objective Function14

The objective function of T-APPM is to minimize the total operation cost in the target regions: i) parking station15

operation costs in both zones, ii) parking space operation costs in both zones, and iii) fleet operation costs. The16

parking station operation cost (Cx) and fleet operation cost (Cm) are not different across two zones. However, the17

parking space operation cost (Cy) can be different across two zones because it includes the land cost. As a result,18

we assume that two zones have different cost values for Cy, but they have the same cost values for Cx and Cm. The19

objective function J is to minimize overall daily average operation cost (Cost) formulated as a function of the planning20

variables (x1, x2, y1, y2,M) with respect to LOS constraint:21

J = min
x1,x2,y1,y2,M

Cost(x1, x2, y1, y2,M) = min
x1,x2,y1,y2,M

(

Cx(x1R1 + x2R2) + Cy,1y1R1 + Cy,2y2R2 + CmM
)

s.t.TA,t ≤ T0
, (5.1)

where Cy,1 is the unit cost for each parking space in zone 1, and Cy,2 is the unit cost for each parking space in zone 2.22

x1 and x2 represent the density of parking stations in each zone, y1 and y2 represent the density of parking stations in23

each zone, andM represents the total number of SAV fleets for the operation. TA,t is the average passenger waiting24

time in time window indexed by t, and T0 is the threshold, the maximum allowed average passenger waiting time.25
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5.2. SAV Operation Model with Parking and Relocation1

For a given time window (t), we define a passenger demand matrix as �t as follows:2

�t =
[

�t,11 �t,12
�t,21 �t,22

]

, (5.2)

where �t,ij refers to the unit passenger demand from zone i to zone j in the given time window t. It is assumed that the3

origin of passenger demand is uniformly distributed in zone i and the destination of passenger demand is uniformly4

distributed in zone j.5

The total number of SAV fleets can be derived by summing the numbers of vehicles at all states. Similar to the6

derivations in Section 3, we first calculate the “required” number of SAV fleets by summing the required number of7

SAV fleets in each state to ensure the level-of-services as follows:8

Mreq(t) =mreq1 (t) + mreq2 (t)

=
(

nreq1,A(t) + n
req
1,S (t) + n

req
1,C (t) + n

req
1,P (t) + n

req
1,R(t)

)

+
(

nreq2,A(t) + n
req
2,S (t) + n

req
2,C (t) + n

req
2,P (t) + n

req
2,R(t)

)

, (5.3)

where the first part(i) of the subscript of ni,X refers to the zone, and the second part(X) refers to the state of the vehicle.9

For example, n2,P refers to the number of SAV fleets in “Parked” state in Zone 2. Then, the number of SAV fleets (M∗)10

is the maximum ofMreq
11

M∗ = max
t
(Mreq(t)) (5.4)

The number of SAV in states A, S, C , and P can be calculated based on the derivations from S-APPM. First, we12

can calculate the number of vehicles in state A as shown in Equation 5.5.13

nreq1,A(t) = (�t,11 + �t,12)R1T
1
A,t1
(p + �p − �p2)

nreq2,A(t) = (�t,22 + �t,21)R2T
1
A,t2
(p + �p − �p2)

. (5.5)

where T 1A,t1 and T 1A,t2 are the average travel time from the nearest parking station to the origin of the passenger of two14

zones.15

Second, the number of SAV in state S can be calculated as shown in Equation 5.6.16

nreq1,S (t) = �t,11R1

( lt,11
vt,11

)

+ �t,12R1

( lt,12
vt,12

)

nreq2,S (t) = �t,22R2

( lt,22
vt,22

)

+ �t,21R2

( lt,21
vt,21

), (5.6)

where lt,ij is the average trip length from zone i to zone j in time window t, and vt,ij is the average speed from zone i17

to zone j in time window t.18

Third, the number of SAV fleets in state C can be calculated as shown in Equation 5.7:
nreq1,C (t) = (�t,11R1 + �t,21R2)T

1
C,t1
(q + �q − �q2)

nreq2,C (t) = (�t,22R2 + �t,12)R1T
1
C,t2
(q + �q − �q2)

. (5.7)

where T 1C,t1 = T 1A,t1 and T 2C,t1 = T 2A,t1 .19
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(a) �12R1 > �21R2 (b) �12R1 < �21R2
Figure 8: Graphical Illustration of the average flow in each state transition link in different demand condition

Next, the required number of SAV fleets in state P can be calculated as shown in Equation 5.8.1

nreq1,P (t) = Φ
−1(p)

√

2(�t,11 + �t,12)R1HIx1

nreq2,P (t) = Φ
−1(p)

√

2(�t,22 + �t,21)R2HIx2
, (5.8)

The formulations for deriving the number of SAV fleets in stateR are different depending on the demand condition.2

If there is more passenger demand from zone 1 to zone 2 than there is from zone 2 to zone 1, there will be an increasing3

number of SAV fleets in zone 2. As a result, some vehicles should be relocated from zone 2 to zone 1. On the other4

hand, if there is more passenger demand from zone 2 to zone 1 than there is demand from zone 1 to zone 2, there will5

be an increasing number of SAV fleets in zone 1. In this case, relocation of vehicles should be from zone 1 to zone 2.6

Figure 8 shows the average flow in each state transition link in both cases.7

As a result, if �12R1 > �21R2,8

nreq1,R(t) = 0

nreq2,R(t) = (�t,12R1 − �t,21R2)TR21 = (�t,12R1 − �t,21R2)
l21
vt,21

, (5.9)

and if �21R2 > �12R1,9

nreq1,R(t) = (�t,21R2 − �t,12R1)TR12 = (�t,21R2 − �t,12R1)
l12
vt,12

nreq2,R(t) = 0
, (5.10)

where TRij refers to the average travel time of vehicles that are being relocated from zone i to zone j, and lij refers to10

the average trip length of vehicles that are being relocated from zone i to zone j.11

nreq1,R(t) and nreq2,R(t) can have different values depending on passenger demand and parameter settings. Consequently,12

it is not feasible to find a closed-form solution for the optimal values of the operation variables. Thus, we ran a13
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numerical analysis to find the optimal values. We first defined four time windows that maximized and minimized the1

required fleet size at each zone, as follows:2

t1,max = argmaxt
(

mreq1 (t)
)

,

t2,max = argmaxt
(

mreq2 (t)
)

,

t1,min = argmint
(

mreq1 (t)
)

,

t2,min = argmint
(

mreq2 (t)
)

,

(5.11)

We assume that the average ground speeds within the same zone in the time windows, v11,t1,max , v22,t2,max , v11,t1,min ,3

and ,v22,t2,min , are the slowest and fastest of the day in each zone, i.e., v11,t11,max = v11,min, v22,t22,max = v22,min, v11,t11,min =4

v11,max, and v22,t22,min = v22,max. Furthermore, we assume that the average speeds between two zones are constant:5

vt,12 = v12 and vt,21 = v21.6

Then, we can rewrite the equations of the minimum required fleet size of each zone, m∗1 and m∗2 as follows:7

m∗1 = m
req
1 (t1,max)

m∗2 = m
req
2 (t2,max)

(5.12)

Based on the operation depicted in Figure 7b, extra vehicles on the top of required fleet sizes for states A, S, C ,8

and R are not needed. In other words:9

n1,A(t) = n
req
1,A(t), n1,S (t) = n

req
1,S (t), n1,C (t) = n

req
1,C (t), n1,R(t) = n

req
1,R(t)

n2,A(t) = n
req
2,A(t), n2,S (t) = n

req
2,S (t), n2,C (t) = n

req
2,C (t), n2,R(t) = n

req
2,R(t)

(5.13)

On the other hand, the number of vehicles parked at parking stations in t, nP (t), is not always the same as nreqP (t),10

but can be found as Equation 5.14:11

n1,P (t) = m∗1 −
(

n1,A(t) + n1,S (t) + n1,C (t) + n1,R(t)
)

n2,P (t) = m∗2 −
(

n2,A(t) + n2,S (t) + n2,C (t) + n2,R(t)
) (5.14)

The number of vehicles not parked in stations in zone i, ni,A(t) + ni,S (t) + ni,C (t) + ni,R(t), is the lowest in ti,min, so12

the number of parked vehicles is the highest in ti,min. The minimum required number of parking spaces in zone i, yiRi,13

is the summation of the daily maximum number of required parking spaces, i.e., nP (ti,min) and additional buffer spaces14

to guarantee that each parking station is not full by confidence level q. As a result, the optimal density of parking15

spaces can be found as shown in Equation 5.1516

y∗1 =
m∗1 −

(

n1,A(t1,min) + n1,S (t1,min) + n1,C (t1,min) + n1,R(t1,min)
)

+ Φ−1(q)
√

2
(

�t,11R1 + �t,21R2
)

HIx1
R1

y∗2 =
m∗2 −

(

n2,A(t2,min) + n2,S (t2,min) + n2,C (t2,min) + n2,R(t1,min)
)

+ Φ−1(q)
√

2
(

�t,22R2 + �t,12R1
)

HIx2
R2

(5.15)

The density of parking stations (xi) can be calculated similar to Equation 3.15 as shown below:17

x1 =
�2

(

vt1,max,11
)2

⋅
1

(

T 1A,t1,max

)2

x2 =
�2

(

vt2,max,22
)2

⋅
1

(

T 1A,t2,max

)2

, (5.16)
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Figure 9: Map of Seoul Metropolitan Area. The green region represents Seoul city, while the yellow and gray regions
represent Gyeonggi-do and Incheon city. Yellow regions are selected as the target region in Gyeonggi-do in this study.

The objective function in Equation 5.1 can be reformulated in terms of T 1A,t1,max and T 1A,t2,max . We numerically find1

the optimal values for T 1A,t1,max and T 1A,t2,max that minimizes total operation cost.2

6. Case Study for Two-Zone Analytical Parking Planning Model3

In this section, we will extend the case study in Section 4 and discuss the findings for T-APPM. The main difference4

between S-APPM and T-APPM is that T-APPM considers inter-region passenger demand as well as the relocation of5

the SAV fleet. We extend the spatial range to the Seoul Metropolitan Area (i.e. Seoul Capital Area, or Sudogwon).6

The Seoul Metropolitan Area refers to the metropolitan area near Seoul, including Seoul, Incheon, and Gyeonggi-7

do, located in the northwest part of South Korea. The population of this area is approximately 26 million people, more8

than half the population of South Korea. Figure 9 provides a map of the Seoul Metropolitan Area. The green region is9

Seoul city, while the yellow and gray regions are Gyeonggi-do and Incheon city. Gyeonggi-do and Incheon city cover a10

wide range of regions, as shown in Figure 9. As a result, if we consider the whole area as the target region for our case11

study, intra-region travel times and inter-region travel times will be too long. It would be inefficient and unrealistic for12

SAVs to travel long distances for relocation and passenger trips. Therefore, we select sub-regions near Seoul that have13

a relatively considerable number of passenger trips to Seoul. The selected area is colored in yellow in Figure 9; this14

region will be referred to as Gyeonggi for the rest of this case study.15

Table 6 shows the average hourly unit passenger demand for our case study according to the Korean National16

Household Travel Survey (Origin-Destination Flow Survey). Similar to Table 3, the table shows corresponding values17

for each time window. Unit passenger demand is calculated based on origin. For example, if there were 52,982.7118

passengers traveling from Seoul to Gyeonggi, we divided the number of passengers by the area of the origin zone, and19

the result was 87.54 [veℎ∕km2∕ℎr]. Similar to Table 3, the values in the total row represent average passenger demand20

during any time-of-day. The values in the AM peak row represent average passenger demand during the morning peak21

(7-9 AM), and the values in the PM peak row represent average passenger demand during the afternoon peak (6-822
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Table 6
Hourly average passenger demand in Seoul. The unit of the values is [veℎ∕km2∕ℎr]

Time Origin Destination
Passenger Demand
by Personal Vehicle

Passenger Demand
by All Mode

Overall

Seoul Seoul 285.11 1720.03
Seoul Gyeonggi 87.54 191.06
Gyeonggi Seoul 18.90 40.80
Gyeonggi Gyeonggi 79.33 232.69

AM peak
(7-9 AM)

Seoul Seoul 765.04 4518.16
Seoul Gyeonggi 280.37 448.92
Gyeonggi Seoul 70.32 165.51
Gyeonggi Gyeonggi 216.07 619.37

PM peak
(6-8 PM)

Seoul Seoul 836.94 4042.69
Seoul Gyeonggi 340.25 795.70
Gyeonggi Seoul 58.01 85.71
Gyeonggi Gyeonggi 225.83 525.61

Off peak

Seoul Seoul 181.93 1207.95
Seoul Gyeonggi 42.98 104.81
Gyeonggi Seoul 9.85 23.84
Gyeonggi Seoul 51.01 164.73

PM). In this study, we assume that passenger demand values in time windows other than AM and PM peaks are equal1

to off-peak passenger demand. As a result, the values in the Off-peak row were calculated based on the values in the2

Total, AM peak, and PM peak rows.3

Table 7 shows the model parameters used for the case study. The area of Seoul is 605.24 km2; the area of Gyeonggi4

(selected areas only) is 2799.20 km2. lij represents the average travel distance from zone i to zone j. The passenger5

demand is assumed to be uniformly distributed, so lij is the average distance between one random point in zone i and6

one random point in zone j. We use the following approximation from Rodriguez-Bachiller (1983) and Wilson (1990)7

to calculate lij :8

lij =

√

(

(

d̄i∗
)2 +

(

d̄j∗
)2
)

+
(

d̄∗ij
)2

≈

√

0.18
(

Ri + Rj
)

+
(

d̄∗ij
)2

, (6.1)

where d̄i∗ is the average distance from one point in zone i to the centroid of zone i, and d̄∗ij is the distance between the9

centroids of zone i and zone j. In the Table 7, the subscript s refers to Seoul and the subscript g refers to Gyeonggi.10

For example, lsg refers to the average travel distance from Seoul to Gyeonggi.11

Because we covered the sensitivity analysis of different cost values in Section 3, we assumed in this section that12

the costs are pre-determined. We used 35.36 $∕veℎ∕day for Cm referenced from Estrada et al. (2021).Cy,1 is assumed13

to be 4.73 $∕spaces∕day and Cy,2 is assumed to be 0.24 $∕spaces∕day, which are the amortized land cost of two14

zones respectively, referenced from declared land value announced by the Korean Ministry of Land, Infrastructure,15

and Transport. We assumed that Cx is 1 $∕stations∕day to make sure that C x was neither too large nor too small16

compared to the other cost variables.17

The results of this case study are shown in Table 8. To analyze the effect of relocation and inter-zonal demands in18

T-APPM, we compare the results of T-APPM with three baselines. The first baseline is the current operating values19

in Seoul and Gyeonggi, denoted as “Current” in Table 8. The second and third baselines are the results of S-APPM20

introduced in Section 3, denoted as “Seoul Only S-APPM” and “Gyeonggi Only S-APPM.” “Seoul Only S-APPM”21

refers to the results of S-APPMwhen only the intra-zonal passenger demand in Seoul is considered as in Section 4, and22
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Table 7
Model parameters used for the case study.

Variable Units Value

R Rs [km2] 605.24
Rg [km2] 2799.20

L

lss [km] 14.76
lsg [km] 25.48
lgs [km] 25.48
lgg [km] 31.74

V

vss,min, vss,max [km∕hr] 18.0, 40.0
vsg,min, vsg,max [km∕hr] 25.0, 35.0
vgs,min, vgs,max [km∕hr] 25.0, 35.0
vgg,min, vgg,max [km∕hr] 20.0, 50.0

p - 0.95
q - 0.95
� - 2
I - 1
H - 2
� - 0.5
T0 [hr] 1/60

C

Cm [$∕veh∕day] 35.616
Cx [$∕stations∕day] 1
Cy,s [$∕spaces∕day] 4.73
Cy,g [$∕spaces∕day] 0.24

“Gyeonggi Only S-APPM” refers to the results of S-APPM when only the intra-zonal passenger demand in Gyeonggi1

is considered.2

In Table 8, it can be seen that xs increased while xg decreased in both demand scenarios. Since x is proportional3

to the squared reciprocal of T 1A,t, this result implies that the average passenger waiting time in Seoul decreased and the4

average passenger waiting time in Gyeonggi increased when the two zones were considered together. The results of y5

are notable. In both demand scenarios, the density of parking spaces in Seoul (ys) increased slightly, while the density6

of parking spaces in Gyeonggi (yg) increased significantly. This shows that increasing the number of parking spaces7

in Gyeonggi is more cost-efficient than increasing the number of parking spaces in Seoul. These results show that8

T-APPM is capable of incorporating different cost variables across two regions so that the most cost-efficient solution9

can be derived. The densities of parking spaces in both Seoul and Gyeonggi are significantly less than the “Current”10

values of Seoul and Gyeonggi. This result implies that if the SAV system is introduced, the number of parking spaces11

will be significantly reduced. As a result of changes in x and y, the average number of parking spaces at each parking12

station in Seoul zs changed slightly, while that of Gyeonggi zg increased significantly. From this result, it can be13

concluded that, with the SAV system, it is more cost-efficient to have fewer parking stations with greater numbers of14

parking spaces, and especially to install more parking spaces in suburbs, which have lower land costs, reducing overall15

cost. Both ms and mg increase in T-APPM results because of increases in passenger demand. However, the results16

show that, compared to the “Current” situation, it is possible to significantly decrease the total number of vehicles by17

using the SAV system. Even when SAV replaces all passenger modes, including train, bus, and subway, and serves18

as a primary mode of passenger trips (i.e., the result of Passenger Demand by All-Mode, shown in Table 8), the total19

number of vehicles is still less than the “Current” value, which is currently only used for passenger demand by personal20

vehicles.21
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Table 8
Summary of results of Case Study for T-APPM

Demand Type Variable Current
Seoul Only
S-APPM

Gyeonggi Only
S-APPM T-APPM

Passenger Demand
by Personal Vehicle

xs [stations∕km2] 524.09 11.66 - 13.36
xg [stations∕km2] 97.92 - 10.32 8.16
ys [spaces∕km2] 7,150.72 718.22 - 820.12
yg [spaces∕km2] 1740.12 - 175.66 366.54
zs [spaces∕station] 13.64 61.59 - 61.39
zg [spaces∕station] 17.77 - 17.01 44.90
ms [veh] 2,703,429 477,944 - 605,699
mg [veh] 4,394,130 - 536,827 1,327,406
m [veh] 7,097,559 - - 1,933,105

Passenger Demand
by All Mode

xs [stations∕km2] 524.09 27.512 - 28.54
xg [stations∕km2] 97.92 - 17.68 13.12
ys [spaces∕km2] 7,150.72 3728.66 - 3758.08
yg [spaces∕km2] 1740.12 - 469.24 640.92
zs [spaces∕station] 13.64 135.52 - 131.68
zg [spaces∕station] 17.77 - 26.53 48.85
ms [veh] 2,703,429 2,549,647 - 2,583,452
mg [veh] 4,394,130 - 1,460,981 2,344,356
m [veh] 7,097,559 - - 5,123,078
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7. Conclusion1

This study presents two analytical models to describe parking operations for SAVs in a given urban transporta-2

tion system: the Single-zone Analytical Parking Planning Model (S-APPM) and the Two-zone Analytical Parking3

Planning Model (T-APPM). S-APPM assumes that the given traffic network is a single network with homogeneous4

network characteristics and passenger demand. On the other hand, T-APPM assumes that the given traffic network5

contains two separate zones, usually the city center and suburb. Both models are carefully derived based on the gen-6

eral model of demand-responsive transportation services (Daganzo and Ouyang, 2019a), introducing novel concepts7

such as parking and relocation. S-APPM offers a closed-form solution for parking operation scenarios with single-zone8

intra-zonal passenger trips. Consequently, computational complexity is significantly reduced compared to previously9

studied simulation-based methodologies. Extending S-APPM, T-APPM introduces inter-zonal passenger trips and the10

relocation of vehicles. The solution of the case study for T-APPM shows that this model can incorporate different11

macroscopic characteristics across two zones.12

The contribution of this study is that two models allow policy-makers and decision-makers to plan parking op-13

erations under the dominance of Shared Autonomous Vehicles, yielding approximated numbers for both densities of14

parking stations and parking spaces. Using the proposed models to find optimal operational variables is much simpler15

than using previously studied simulation-based approaches. The simulation-based methods require much effort and16

time to set the simulation environment and run the simulation with different variables. However, the solutions from17

the proposed models can be derived in much less time and have much less complexity.18

There are several assumptions made during the model derivations; these assumptions can be further studied so that19

the model can be made more realistic. As discussed in Section 3.2, it is possible to allocate a new passenger request20

to an SAV cruising back to the parking station (state C). The dotted line in Figure 2 indicates this state transition.21

Introducing this state transition would improve the efficiency of the whole system and, as a result, results will be22

better with a smaller SAV fleet and fewer parking spaces. Forcing SAVs to park between trips might add eVMT to the23

system and inflate congestion. This is particularly relevant in urban areas where traffic and parking are already pressing24

issues. One possible workaround to address this concern is to introduce state-specific cost variables into the model,25

which would allow for more targeted optimization of the system. These variables could account for the costs associated26

with eVMT and parking. By incorporating state-specific cost variables, we can fine-tune the model to optimize the27

allocation of SAVs and the distribution of parking stations and spaces. With a proper configuration, we expect that28

our model will increase the density of parking stations and parking spaces to ensure that the deadheading eVMT is not29

significant. This approach could lead to more efficient SAV operations that minimize congestion, better utilize parking30

resources, and provide a more realistic representation of SAV deployments in urban environments. Another way to31

reduce eVMT and potentially alleviate congestion is to incorporate the effect of Dynamic Ride Sharing (DRS) into the32

model. DRS enables multiple passengers with similar origins and destinations to share a single SAV, thus optimizing33

the allocation of SAVs and reducing the overall fleet size required. By integrating DRS into the model, it is possible34

to achieve a more efficient SAV operation that minimizes empty VMT, optimizes parking resources, and mitigates35

the impact on urban traffic. While the current model mainly focuses on systems without ridesharing, it can easily be36

integrated with the framework proposed by Daganzo and Ouyang (2019a) to incorporate the effect of DRS, making it37

a valuable foundation for future research. Figure 10 shows our suggestion for future researchers to incorporate DRS38

into our model. In this figure, the numbers within each node represent a vehicle’s workload, characterized by a tuple of39

non-negative integers (i, j). The first index, i, denotes the number of passengers currently inside the vehicle, while the40

second index, j, indicates the number of passengers assigned to the vehicle for future pick-up. By incorporating these41

indices into the model, it is possible to track the allocation of SAVs more accurately and efficiently, taking into account42

the real-time status of each vehicle as it serves multiple passengers simultaneously through dynamic ride-sharing.43

Also, it is assumed in T-APPM that SAVs are relocated to other zones only from state C. However, it is also44

realistic to assume that relocation of vehicles can happen from state P. This change can improve the model by dealing45

with cases in which extreme relocation of vehicles is required, and vehicles parked in one zone must be relocated to46

the other zone. Also, we used several approximations in both case studies in Section 4 and Section 6. The results of47

the case studies can be more realistic if we use field-observed values instead of approximated values. Using urban48

vehicle trajectory data is desirable to achieve adequate values for each parameters (Naveh and Kim, 2018; Choi et al.,49

2021; Jin et al., 2022). Additionally, while we assumed that SAVs would be equipped with advanced sensors and50

communication technologies, such as 5G networks, which are necessary for real-time data transmission and vehicle-51

to-vehicle communication, we did not explicitly consider the cost-benefit of data transfer for one vehicle in our study.52
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Figure 10: Modified workload transition network when incorporating the effect of Dynamic Ride Sharing into the model
proposed in this study. Vehicle’s workload is characterized by a tuple of non-negative integers (i, j). The first index,
i, denotes the number of passengers currently inside the vehicle, while the second index, j, indicates the number of
passengers assigned to the vehicle for future pick-up. By incorporating these indices into the model, it is possible to track
the allocation of SAVs more accurately and efficiently, taking into account the real-time status of each vehicle as it serves
multiple passengers simultaneously through dynamic ride-sharing.

Furthermore, while we acknowledge that the current energy crisis worldwide may affect the operating costs of SAVs,1

our study was intended to provide a general framework for parking planning with SAV fleets, rather than to conduct2

a comprehensive analysis of the impact of energy crises on SAVs. However, we recognize the importance of further3

research in this direction and will consider it in future work.4

Future research can be conducted in various directions. In T-APPM, for simplicity of the model, we considered5

only inter-zonal passenger trips between two zones. However, T-APPM can be further investigated using a multi-zone6

approach. For example, we assumed in Sections 4 and 6 that the macroscopic characteristics of Seoul and Gyeonggi,7

such as passenger demand and costs, were homogeneous. However, Seoul and Gyeonggi can be split into multiple8

zones with different macroscopic characteristics. To create a “multi-zonal” analytical parking planning model, it is9

necessary to consider much more complex relocation between zone pairs. Developing a multi-zonal analytical park-10

ing planning model will contribute to addressing the inherent heterogeneity present in urban transportation systems.11

By incorporating spatial variations in demand, travel speeds, and infrastructure availability, a multi-zonal model can12

provide a more accurate representation of real-world dynamics and allow for more targeted optimization strategies.13

Such improvements will answer questions like ‘Where exactly should parking stations be located?’14

While the APPM may be particularly useful for new developments or greenfield sites, it can also be applied to15

existing cities with some modifications. In these cases, the model can be used to identify areas where parking demand16

is high or where there is a shortage of parking spaces, and to evaluate different planning scenarios and their impacts on17

parking supply and demand. In addition, since most SAVs are likely to be electric vehicles (EV), it is also necessary18

to consider battery and charging infrastructure (Lee et al., 2021) when planning the parking operation. In the incoming19

era of SAVs, parking stations will serve as storage places for unused vehicles and as depots that manage overall SAV20

operation, including charging. As a result, incorporating existing studies on the battery cycle of EVs and the charging21

infrastructure into parking operation is a good direction for future research.22
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A. Glossary of Notations1

Notation Unit Meaning
x [stations∕km2] density of parking stations
y [spaces∕km2] density of parking spaces
m [veh] number of SAV fleets
z [spaces∕stations] the average number of parking spaces in a parking station
R [km2] area of target area
Cost [$∕day] overall daily average operation cost
TA,t [hr] average passenger waiting time
T iA,t [hr] average travel time from the i-th nearest parking station to the origin of

the passenger
T0 [hr] maximum allowed average passenger waiting time
Cx [$∕stations∕day] daily operation cost of a parking station
Cy [$∕spaces∕day] daily operation cost of a parking space
Cm [$∕vehicles∕day] daily operation cost of an SAV fleet
nA [veh] the number of SAV fleets in state A
nS [veh] the number of SAV fleets in state S
nC [veh] the number of SAV fleets in state C
nP [veh] the number of SAV fleets in state P
nreqA [veh] the required number of SAV fleets in state A
nreqS [veh] the required number of SAV fleets in state S
nreqC [veh] the required number of SAV fleets in state C
nreqP [veh] the required number of SAV fleets in state P
vmin [veh] the minimum average ground speed throughout the day
vmax [veh] the maximum average ground speed throughout the day
�t [veh∕hr∕km2] average passenger demand in time window t
lt [km] average trip length
vt [km∕hr] average ground speed in time window t
TS,t [veh] average travel time for passenger trip
TC,t [veh] average travel time from the destination of the passenger to the nearest

parking station
T iC,t [veh] average travel time from the destination of the passenger to the i-th near-

est parking station
p - confidence level to guarantee that the passengers are assigned to the

nearest parking station at a certain confidence level.
q - confidence level guarantee that the nearest parking station is not full.
� - the incremental ratio of the travel time to the next nearest parking station
H [hr] length of a time window
I - the mean-to-variance ratio of the number of fleets parked at each parking

station
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Figure 11: Modified workload transition network when incorporating the effect of Dynamic Ride Sharing into the model
proposed in this study. The vehicle’s workload is characterized by a tuple of non-negative integers (i, j). The first index, i,
denotes the number of passengers currently inside the vehicle, while the second index, j, indicates the number of passengers
assigned to the vehicle for future pick-up. (a) Overall workload transition network, (b) Workload transition network at
t = t�max (only red lines are considered), and (c) Workload transition network at t = t�min (only red lines are considered).

B. Integration of Dynamic Ride-Sharing in S-APPM1

We consider a case where the maximum number of occupants in a vehicle is two people, following Daganzo and2

Ouyang (2019a). Figure 11 (a) shows the overall modified workload transition network. The vehicle’s workload is3

characterized by a tuple of non-negative integers (i, j). The first index, i, denotes the number of passengers currently4

inside the vehicle, while the second index, j, indicates the number of passengers assigned to the vehicle for future5

pick-up.6

In S-APPM in Section 3, we considered two distinct time windows: one during which the demand is at its peak7

(t�max ) and another during which the demand is at its lowest (t�min ). We analytically derived solutions by comparing8

the operational variables within these two time windows. Following a similar approach, we can make certain simplifi-9

cations for the integration of pooling. Given that high demand at t�max implies a large number of individuals seeking to10

use SAVs, we can simplify the integration of pooling by assuming that during this time window, each SAV is consis-11

tently occupied by two passengers. This assumption aligns with the concept that when demand is high, the probability12

of finding passengers with similar routes increases, making pooling more efficient. Conversely, during the time win-13

dow when the demand is at its minimum (t�min ), we can assume that SAVs are occupied by only one passenger. This14

assumption stems from the understanding that during periods of low demand, the likelihood of matching passengers15

with similar routes decreases. These assumptions enable us to form a basic analytical framework to understand the16

interaction between parking planning and pooling by focusing on how vehicle occupancy changes in response to fluc-17

tuations in demand. However, it is important to acknowledge that these assumptions are simplifications and that in18

real-world scenarios, demand and occupancy can vary in more complex patterns.19

As a consequence of the assumptions regarding passenger occupancy during different demand periods, we can20

conceptualize the workload transition network for the SAVs. Specifically, at the time window t�max , when demand is21

at its peak and each SAV is assumed to be occupied by two passengers, the workload transition network is assumed22

to take on the form depicted in Figure 11 (b) and only the red lines are considered as active state transitions. On the23

other hand, at the time window t�min , when demand is at its lowest and each SAV is assumed to be occupied by a single24

passenger, the workload transition network is assumed to take on the form depicted in Figure 11 (c), which is identical25

to S-APPM.26

The minimum required fleet size, or the maximum required number of SAVs, m∗, can be computed by summing27

the required number of vehicles at each state at t�max as follows:28

m∗ = max
t
(mreq(t)) = mreq(t�max )

mreq(t�max ) = n
req
01 (t�max ) + n

req
02 (t�max ) + n

req
11 (t�max ) + n

req
20 (t�max ) + n

req
10 (t�max ) + n

req
C (t�max ) + n

req
P (t�max )

. (B.1)
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The summation of nreq01 (t�max ) and nreq02 (t�max ) is equivalent to the number of SAV fleets in state A, denoted by1

nreqA (t�max ), as presented in Section 3. This equivalence arises because the transition from states (0, 1) and (0, 2) to state2

(1, 1) involves the time it takes for the SAV at a parking station to be assigned to two passengers and then proceed to3

pick up one of them. As a result, the time spent in state (0, 1) and (0, 2) is essentially the travel time from the parking4

station to the origin location of the first passenger. While the unit passenger demand is represented by �max, the vehicle5

demand is effectively halved to �max
2 . This is due to the assumption that there are two passengers in each vehicle as a6

result of pooling. Then, the summation of nreq01 (t�max ) and nreq02 (t�max ) can be calculated as follows:7

nreq01 (t�max ) + n
req
02 (t�max ) =

�maxR
2

⋅ T 1A,t�max
(p + �p − �p2). (B.2)

The time spent in state (1, 1) represents the travel time from the origin location of the first passenger to the origin8

location of the second passenger. This travel time can be calculated analytically using the expression for the expected9

distance to the closest of n random points, as presented in Section 7.A of Daganzo and Ouyang (2019b). As a result,10

the number of SAV fleets in the state (1,1) can be calculated as follows:11

nreq11 (t�max ) =
�maxR
2

⋅

√

R
nreq01 (t�max ) + n

req
02 (t�max )

⋅
�
vmin

=
�maxR
2

⋅

√

2
�max ⋅ (p + �p − �p2)

⋅
�
vmin

⋅

√

√

√

√

1
T 1A,t�max

. (B.3)

Once the second passenger boards, the vehicle moves to the closer destination and drops off one, during state (2, 0).12

It then continues to the destination of the remaining passenger, during state (1, 0). The average travel time between13

the second pick-up and the last drop-off is higer than a single passenger trip without ridesharing, lt�max∕vmin. The ratio14

between these two average in-service travel times is denoted by 
t�max > 1. Note that in the setting of Daganzo and15

Ouyang (2019a), it is 1 + 1
√

2
. The in-service SAV fleet size is:16

nreq10 (t�max ) + n
req
20 (t�max ) = 
t�max ⋅

�maxR
2

⋅
lt�max
vmin

. (B.4)

The number of SAV fleets in state C and P should be equivalent to the derivation from Section 3 as follows:17

nreqC (t�max ) =
�maxR
2

⋅ T 1A,t�max

nreqP (t�max ) = �Φ
−1(p)

√

�maxRHI
1

vminT 1A,t�max

. (B.5)

As a result,

m∗ =
�maxR
2

(1 + p + �p − �p2) ⋅ T 1A,t�max
+
�maxR
2

⋅

√

2
�max ⋅ (p + �p − �p2)

⋅
�
vmin

⋅

√

√

√

√

1
T 1A,t�max

+ 
t�max ⋅
�maxR
2

⋅
lt�max
vmin

+ �Φ−1(p)
√

�maxRHI
1

vminT 1A,t�max

. (B.6)

For the case where the demand is at its minimum, the derivation can proceed in the same manner as in the original18

Single-Zone Analytical Parking Planning Model (S-APPM). As a result, we can derive the optimal density of parking19

spaces following Equation 3.19 and Equation 3.20.20
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Sincem∗ has
√

1
T 1A,t�max

term inside, Equation 3.22would be updatedwith an additional term, which isP ′

− 12

(

T 1A,t�max

)− 12
1

as follows:2

min
T 1A,t�max

Cost
(

T 1A,t�max

)

= min
T 1A,t�max

(

P
′

0 + P
′

−2

(

(T 1A,t�max
)
)−2

+ P
′

−1

(

T 1A,t�max

)−1
+ P

′

1T
1
A,t�max

+ P
′

− 12

(

T 1A,t�max

)− 12
)

.

(B.7)

The inclusion of the term
(

T 1A,t�max

)− 12 introduces additional complexity to Equation B.7. As a consequence,3

finding an analytical closed-form solution for this equation becomes increasingly challenging. However, this equation4

can still be numerically solved.5
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